现代制造工程 ›› 2024, Vol. 521 ›› Issue (2): 142-149.doi: 10.16731/j.cnki.1671-3133.2024.02.019

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于NSGA-Ⅱ的智能化电铲多目标最优挖掘轨迹规划

陈广玲1,2, 张天赐3, 付涛2, 王林涛2, 宋学官2   

  1. 1 毕节高新技术产业开发区国家能源大规模物理储能技术研发中心,毕节 551700;
    2 大连理工大学机械工程学院,大连 116024;
    3 燕山大学车辆与能源学院,秦皇岛 066004
  • 收稿日期:2023-04-20 出版日期:2024-02-18 发布日期:2024-05-29
  • 通讯作者: 宋学官,博士,教授,博士生导师,国家高层次人才计划专家,重大装备设计研究所所长,长期从事多学科建模分析与优化设计、工业大数据与人工智能技术、装备智能化和数字孪生等方面的研究工作。E-mail:sxg@dlut.edu.cn
  • 作者简介:陈广玲,硕士,主要从事无人工程机械、机器人运动规划的研究工作。E-mail:2774265230@qq.com;

Multi-objective optimal mining trajectory planning for intelligent electric shovel based on NSGA-Ⅱ

CHEN Guangling1,2, ZHANG Tianci3, FU Tao2, WANG Lintao2, SONG Xueguan2   

  1. 1 National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial Development Zone, Bijie 551700,China;
    2 School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China;
    3 School of Vehicle and Energy,Yanshan University, Qinhuangdao 066004, China
  • Received:2023-04-20 Online:2024-02-18 Published:2024-05-29

摘要: 为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使用高次多项式对挖掘轨迹进行插值,将挖掘轨迹寻优问题转化为多项式系数寻优问题,最后,以挖掘时间最短及单位体积物料的挖掘能耗最小作为优化目标,以电机性能与挖掘过程中几何条件等作为约束,利用多目标优化平台PlatEMO,将NSGA-Ⅱ作为多目标优化算法,指定待优化问题的目标函数及约束函数,获取到多目标优化Pareto最优解集,基于决策偏好设置权重并根据TOPSIS法获取最优解,得到多目标最优挖掘轨迹规划结果。结果表明,优化后挖掘轨迹满足实时节能的挖掘要求。

关键词: 智能化电铲, 动力学模型, 非支配排序遗传算法, 挖掘轨迹规划, 多目标优化

Abstract: To realize the real-time energy-saving mining of intelligent electric shovels, a multi-objective optimal mining trajectory planning method was put forward for intelligent electric shovels based on Non-dominated Sorting Genetic Algorithm-Ⅱ (NSGA-Ⅱ). Firstly, Lagrange's equations were used to establish the dynamic model of a working device for an intelligent electric shovel. Then, the mining trajectory was interpolated by adopting higher-order polynomials. Additionally, the issue of mining trajectory optimization was transformed into a polynomial coefficient optimization problem. Finally, minimizing the mining time and energy consumption per unit volume of material was taken as the optimization objective. By taking the motor performance and geometric conditions during the mining process as constraints, and utilizing the multi-objective optimization platform PlatEMO, NSGA-Ⅱ was adopted as the multi-objective optimization algorithm. The optimal solution set of multi-objective optimization Pareto was acquired by specifying the objective function and constraint function of the problem to be optimized. The weights were set in accordance with decision preference and the optimal solution was obtained by employing the TOPSIS method. Given this, the results of multi-objective optimal mining trajectory planning were acquired. From the results, the optimized mining trajectory was found to be able to satisfy the mining requirements of real-time energy saving.

Key words: intelligent electric shovel, dynamic model, Non-dominated Sorting Genetic Algorithm-Ⅱ (NSGA-Ⅱ), mining trajectory planning, multi-objective optimization

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: