现代制造工程 ›› 2024, Vol. 522 ›› Issue (3): 38-44.doi: 10.16731/j.cnki.1671-3133.2024.03.006

• 智能制造 • 上一篇    下一篇

基于改进蚁群算法的移动机器人路径规划

朱敏1,2, 胡若海1, 卞京1   

  1. 1 合肥工业大学电气与自动化工程学院,合肥 230009;
    2 工业自动化安徽省工程技术研究中心,合肥 230009
  • 收稿日期:2023-05-31 出版日期:2024-03-18 发布日期:2024-05-31
  • 作者简介:朱敏,副教授,硕士研究生导师,主要研究方向为复杂系统建模与控制。E-mail:zhumin71@126.com;胡若海,硕士研究生,主要研究方向为移动机器人路径规划。卞京,硕士研究生,主要研究方向为柔性作业车间调度理论研究。

Path planning for mobile robots based on improved ant colony algorithm

ZHU Min1,2, HU Ruohai1, BIAN Jing1   

  1. 1 School of Electrical and Automation Engineering,Hefei University of Technology,Hefei 230009,China;
    2 Anhui Provincial Engineering Technology Research Center for Industrial Automation,Hefei 230009,China
  • Received:2023-05-31 Online:2024-03-18 Published:2024-05-31

摘要: 针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。

关键词: 蚁群算法, 路径规划, 跳点搜索算法, 移动机器人, 信息素启发

Abstract: In order to address the drawbacks of traditional ant colony algorithm in mobile robot path planning,such as blind search,slow convergence speed,multiple path turning points,it proposes a mobile robot path planning algorithm based on improved ant colony algorithm.Firstly,the Jump Point Search (JPS) algorithm is utilized to unevenly distribute initial pheromones,reducing the likelihood of blind search during the early stages of the ant colony.Then,a Chebyshev distance weighting factor and turning cost are introduced to improve the heuristic function,enhancing the algorithm′s convergence speed,global path optimization capability,and smoothness of the search path.Finally,a novel pheromone update strategy is proposed that introduces an adaptive reward-punishment factor to adaptively adjust the pheromone reward-punishment factor during pre-and post-iteration phases,ensuring the algorithm′s global optimal convergence.Experimental simulation results demonstrate that,in various map environments and compared to existing literature results,the proposed algorithm effectively reduces the number of iterations and optimal path length required for path search while increasing path smoothness.

Key words: ant colony algorithm, path planning, Jump Point Search (JPS) algorithm, mobile robot, pheromone heuristic

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: