[1] 陶永,刘海涛,王田苗,等.我国服务机器人技术研究进展与产业化发展趋势[J].机械工程学报,2022,58(18):56-74. [2] 张伟民,张月,张辉.基于改进A*算法的煤矿救援机器人路径规划[J].煤田地质与勘探,2022,50(12):185-193. [3] 杨恒,李越,孙寒挺,等.路径最优的移动机器人路径规划研究[J].机械设计,2022,39(8):58-67. [4] 迟旭,李花,费继友.基于改进A*算法与动态窗口法融合的机器人随机避障方法研究[J].仪器仪表学报,2021,42(3):132-140. [5] WANG J,LI T,LI B,et al.GMR-RRT*:Sampling-based path planning using gaussian mixture regression[J].IEEE Transactions on Intelligent Vehicles,2022,7(3):690-700. [6] DENG X,LI R,ZHAO L,et al.Multi-obstacle path planning and optimization for mobile robot[J].Expert Systems with Applications,2021,183:115445. [7] 何嘉,李雪冬.一种改进的遗传算法:GA-EO算法[J].计算机应用研究,2012,29(9):3307-3308,3311. [8] JAIN M,SAIHJPAL V,SINGH N,et al.An Overview of Variants and Advancements of PSO Algorithm[J].Applied Sciences,2022,12(17):8392. [9] KONATOWSKI S. Application of the ACO algorithm for UAV path planning[J]. Przeglad Elektrotechniczny, 2019,1(7):117-121. [10] 王猛,邢关生. 基于改进蚁群算法的机器人路径规划[J].电子测量技术,2020,43(24):52-56. [11] CHEN Y,WU J,HE C,et al.Intelligent Warehouse Robot Path Planning Based on Improved Ant Colony Algorithm[J].IEEE Access,2023,11:12360-12367. [12] 姚晓通,李致远,程晓.基于改进蚁群算法的机器人路径规划研究[J].计算机仿真,2021,38(11):379-383 [13] WU L,HUANG X,CUI J,et al.Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot[J].Expert Systems with Applications,2023,215:119410. [14] 宋宇,张浩,程超.基于改进蚁群算法的物流机器人路径规划[J].现代制造工程,2022(11):35-40,47. [15] 魏立新,张钰锟,孙浩,等.基于改进蚁群和DWA算法的机器人动态路径规划 [J].控制与决策,2022,37(9):2211-2216. [16] 刘建娟,刘忠璞,张会娟,等.基于模糊控制蚁群算法的移动机器人路径规划[J].组合机床与自动化加工技术,2023(1):20-24. [17] UTZLE T S. ACO algorithms for the Traveling Salesman Problem[J]. Evutionary algorithms in engineering and computer science, 1999(4):163-183. [18] HARABOR D,GRASTIEN A. Improving jump point search[C]//International Conference on Automated Planning and Scheduling 2014. Quebec, Canda: Association for the Advancement of Artificial Intelligence(AAAI),2014. [19] 周敬东,高伟周,杨文广,等.基于改进蚁群算法的移动机器人路径规划[J].科学技术与工程,2022,22(28):12484-12490. [20] LUO Q,WANG H,ZHENG Y,et al.Research on path planning of mobile robot based on improved ant colony algorithm[J].Neural Computing and Applications,2020,32:1555-1566. |