[1] 陆绮荣,丁昕,梁雅雯.基于改进YOLOX的地下排水管道缺陷识别算法[J].电子测量技术,2022,45(21):161-168. [2] 高琳,曹建国.管道泄漏检测方法研究综述[J].现代制造工程,2022(2):154-162. [3] YANG M D,SU T C.Automated diagnosis of sewer pipe defects based on machine learning approaches[J].Expert Systems with Applications,2008,35(3):1327-1337. [4] HALFAWY M R,HENGMEECHAI J.Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine[J].Automation in Construction,2014,38:1-13. [5] XIE Q,LI D,XU J,et al.Automatic detection and classification of sewer defects via hierarchical deep learning[J].IEEE Transactions on Automation Science and Engineering,2019,16(4):1836-1847. [6] CHENG J C P,WANG M.Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques[J].Automation in Construction,2018,95:155-171. [7] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].ArXiv Preprint ArXiv:2207.02696,2022. [8] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Virtual:IEEE&CVF,2021. [9] CHEN J,KAO S,HE H,et al.Run,Don′t Walk:Chasing Higher FLOPS for Faster Neural Networks[J].ArXiv Preprint ArXiv:2303.03667,2023. [10] TONG Z,CHEN Y,XU Z,et al.Wise-IoU:Bounding Box Regression Loss with Dynamic Focusing Mechanism[J].ArXiv Preprint ArXiv:2301.10051,2023. [11] 毛清华,李世坤,胡鑫,等.基于改进YOLOv7的煤矿带式输送机异物识别[J].工矿自动化,2022,48(12):26-32.DOI:10.13272/j.issn.1671-251x.2022100011. [12] LARSSON G,MAIRE M,SHAKHNAROVICH G.Fractalnet:Ultra-deep neural networks without residuals[J].ArXiv Preprint ArXiv:1605.07648,2016. [13] XIAO J,ZHAO T,YAO Y,et al.Context augmentation and feature refinement network for tiny object detection[J].ICLR,2022:1-11. [14] new-workspace-zyqyt.Storm drain model Dataset[EB/OL].Roboflow,2021[2023-06-17].https://universe.roboflow.com/new-workspace-zyqyt/storm-drain-model. [15] WANG J L,DENG Y L,LI Y,et al.A review on detection and defect identification of drainage pipeline[J].Sci.Technol.Eng,2020,33:13520-13528. |