现代制造工程 ›› 2024, Vol. 527 ›› Issue (8): 126-135.doi: 10.16731/j.cnki.1671-3133.2024.08.016

• 仪器仪表/检测/监控 • 上一篇    下一篇

融合残差块与Swin-Transformer机制的刀具磨损监测方法*

李泽稷1, 周学良1, 孙培禄2   

  1. 1 湖北汽车工业学院机械工程学院,十堰 442002;
    2 运城学院机械工程学院,运城 044000
  • 收稿日期:2023-11-13 出版日期:2024-08-18 发布日期:2024-08-30
  • 通讯作者: 周学良,教授,硕士研究生导师,主要研究方向为数字化设计与制造、制造系统调度与优化。E-mail:zhouxl@huat.edu.cn
  • 作者简介:李泽稷,硕士研究生,主要研究方向为深度学习、刀具磨损。E-mail:2404563430@qq.com
  • 基金资助:
    *国家自然科学基金资助项目(52075107);湖北省高等学校优秀中青年科技创新团队计划项目(T2020018)

Tool wear monitoring methods incorporating residual block and Swin-Transformer mechanisms

LI Zeji1, ZHOU Xueliang1, SUN Peilu2   

  1. 1 School of Mechanical Engineering,Hubei Institute of Automotive Technology,Shiyan 442002,China;
    2 School of Mechanical Engineering,Yuncheng University,Yuncheng 044000,China
  • Received:2023-11-13 Online:2024-08-18 Published:2024-08-30

摘要: 为进一步提高切削加工过程刀具磨损值监测的精度,提出一种融合残差块与Swin-Transformer模型的刀具磨损监测模型。首先,采用分组卷积残差块提取信号的特征;然后,利用Swin-Transformer模型中的分块滑动窗口自注意力机制对提取的特征进行平移融合;最后,通过回归层实现刀具磨损值监测。试验结果表明,融合一层残差块与一层stage机制的Swin-Transformer模型可以有效融合刀具磨损状态监测信号的全局信息,相比其他Swin-Transformer模型,不仅模型结构简单,而且具有更高的监测精度,利用PHM2010数据集验证的MSE、MAE和R2分别达到4.471 9、1.467 5和0.995 8。

关键词: 刀具, 磨损监测, 残差卷积神经网络, Swin-Transformer模型

Abstract: To further improve the accuracy of tool wear value monitoring in the cutting machining process,a tool wear monitoring model that integrated the residual block and Swin-Transformer model was proposed.Firstly,the grouped convolutional residual block was used to extract the features of the signal.Then,the chunked sliding window self-attention mechanism in the Swin-Transformer model was used to translate the extracted features.Finally,the tool wear value prediction was realized through the regression layer.The experimental results show that the Swin-Transformer model fusing a layer of residual blocks with a layer of stage mechanism can effectively fuse the global information of tool wear state monitoring signals,which not only has a simple model structure but also has a higher monitoring accuracy compared with other Swin-Transformer models,and the MSE,MAE,and R2 verified by utilizing the PHM2010 dataset reached 4.471 9,1.467 5,and 0.995 8,respectively.

Key words: cutting tool, wear monitoring, residual convolutional neural networks, Swin-Transformer model

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: