[1] REHORN A G,JIANG J,ORBAN P E.State-of-the-art methods and results in tool condition monitoring:a review[J].The International Journal of Advanced Manufacturing Technology,2005,26(7):693-710. [2] ELSHEIKH A,YACOUT S,OUALI M S.Bidirectional handshaking LSTM for remaining useful life prediction[J].Neurocomputing,2019,323:148-156. [3] ABELLAN-NEBOT J V,ROMERO SUBIRÓN F.A review of machining monitoring systems based on artificial intelligence process models[J].The International Journal of Advanced Manufacturing Technology,2010,47:237-257. [4] LI X,LIM B S,ZHOU J H,et al.Fuzzy neural network modelling for tool wear estimation in dry milling operation[C]//Annual Conference of the PHM Society.San Diego,Cal.,USA:Prognostics and Health Management,2009:1. [5] 张栋梁,莫蓉,孙惠斌,等.基于混沌时序分析方法与支持向量机的刀具磨损状态识别[J].计算机集成制造系统,2015,21(8):2138. [6] SATEESH B G,ZHAO P,LI X L.Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Proceedings of 21st International Conference(Part I 21)Database Systems For Advanced Applications(DASFAA).Dallas:Springer International Publishing,2016:214-228. [7] LU L,SHIN H,ROTH H R,et al.Deep convolutional neural networks for computer-aided detection:CNN architectures,dataset characteristics and transfer learning[J].IEEE Transactions on Medical Imaging,2016,35(5):1285-1298. [8] 曹大理,孙惠斌,张纪铎,等.基于卷积神经网络的刀具磨损在线监测[J].计算机集成制造统,2020,26(1):74-80.DOI:10.13196/j.cims.2020.01.008. [9] 戴稳,张超勇,孟磊磊,等.采用深度学习的铣刀磨损状态预测模型[J].中国机械工程,2020,31(17):2071. [10] 滕瑞,黄海松,杨凯,等.基于图像编码技术和卷积神经网络的刀具磨损值在线监测方法[J].计算机集成制造系统,2022,28(4):1042. [11] 邓祥力,吴高珍,魏聪聪,等.基于多源数据融合的AlexNet神经网络大电网故障诊断[J].现代电力,2023,40(2):161-169.DOI:10.19725/j.cnki.1007-2322.2021.0260. [12] 方宇伦,陈雪纯,杜世昌,等.基于轻量化深度学习VGG16网络模型的表面缺陷检测方法[J].机械设计与研究,2023,39(2):143-147.DOI:10.13952/j.cnki.jofmdr.2023.0068. [13] 曾飞,陶玉衡,苏俊彬,等.融合ResNet18和Deconvolution的输送带横向跑偏检测方法[J].现代制造工程,2023(8):121-126.DOI:10.16731/j.cnki.1671-3133.2023.08.017. [14] 赵昀杰,张太红,姚芷馨.基于EfficientNet的实时目标检测模型[J].计算机应用与软件,2023,40(8):255-264,297. [15] IOANNOU Y,ROBERTSON D,CIPOLLA R,et al.Deep Roots:Improving CNN Efficiency with Hierarchical Filter Groups[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:[s.n.],2017:5977-5986.DOI:10.1109/CVPR.2017.633. [16] CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//European Conference on Computer Vision.Cham:Springer International Publish-ing,2020:213-229. [17] LIU Z,LIN Y,CAO Y,et al.Swin Transformer:Hierarchical Vision Transformer using Shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal:[s.n.],2021:10012-10022. [18] 扶兰兰,黄昊,王恒,等.基于 Swin Transformer 模型的玉米生长期分类[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(14):191-200. [19] 叶铭亮,周慧英,李建军.基于改进Swin Transformer的森林火灾检测算法[J].中南林业科技大学学报,2022,42(8):101-110.DOI:10.14067/j.cnki.1673-923x.2022.08.010. [20] 李俊杰,易诗,何润华,等.基于窗口注意力聚合Swin Transformer的无人机影像语义分割方法[J/OL].计算机工程与应用:1-14[2023-09-20].http://kns.cnki.net/kcms/detail/11.2127.TP.20230812.1057.002.html. [21] 李紫桐,赵健康,徐静冉,等.基于改进Swin Transformer的遥感图像融合方法[J/OL].光子学报:1-15[2023-09-20].http://kns.cnki.net/kcms/detail/61.1235.O4.20230918.1631.039.html. [22] 王庆明,程耀东,朱国辉.刀具磨损型式与磨钝标准VB的选取[J].机械,1996(6):37-38. [23] 程胜明,王雅君,张昕晨,等.采用残差结构和卷积神经网络的铣刀磨损研究[J/OL].机械科学与技术:1-8[2023-09-06].https://doi.org/10.13433/j.cnki.1003-8728.20230108. [24] IOANNOU Y,ROBERTSON D,CIPOLLA R,et al.Deep Roots:Improving CNN Efficiency with Hierarchical Filter Groups[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:[s.n.],2017: 5977-5986.DOI:10.1109/CVPR.2017.633. [25] PHM Society.PHM data challenge 2010[DB/OL].[2023-11-13].https://www.phmsociety.org/competition/phm/10. [26] 何彦,凌俊杰,王禹林,等,基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J].中国机械工程,2020,31(16):1959-1967. [27] 刘会永,张松,李剑峰,等.采用改进CNN-BiLSTM模型的刀具磨损状态监测[J].中国机械工程,2022,33(16):1940-1947,1956. |