现代制造工程 ›› 2024, Vol. 529 ›› Issue (10): 130-137.doi: 10.16731/j.cnki.1671-3133.2024.10.017

• 仪器仪表/检测/监控 • 上一篇    下一篇

基于改进ViT的熔池识别与焊接偏差在线检测方法*

蒋宇轩1, 林凯1, 王瑶祺1, 张岳1, 洪宇翔1,2   

  1. 1 中国计量大学机电工程学院,杭州 310018;
    2 中国计量大学浙江省智能制造质量大数据溯源与应用重点实验室,杭州 310018
  • 收稿日期:2024-02-02 发布日期:2024-10-29
  • 通讯作者: 洪宇翔,博士,副教授,硕士研究生导师,主要研究方向为智能化焊接与增材制造。E-mail:hongyuxiang@cjlu.edu.cn
  • 作者简介:蒋宇轩,硕士研究生,主要研究方向为机器人智能化焊接。
  • 基金资助:
    *国家自然科学基金项目(51605251);浙江省自然科学基金项目(LY22E050009);浙江省教育厅科研资助项目(Y202249427);浙江省教育厅科研资助项目(Y202147838);浙江省属高校基本科研业务费专项资金资助项目(2023YW41)

Improved ViT-based method for molten pool recognition and online detection of welding deviation

JIANG Yuxuan1, LIN Kai1, WANG Yaoqi1, ZHANG Yue1, HONG Yuxiang1,2   

  1. 1 College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China;
    2 Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, China Jiliang University,Hangzhou 310018,China
  • Received:2024-02-02 Published:2024-10-29

摘要: 焊接偏差的精确检测是实现焊接机器人焊缝轨迹自动跟踪及智能化焊接的前提。提出了一种基于改进视觉转换器(Vision Transformer,ViT)的熔池识别与焊接偏差在线检测方法。首先,采用轻量级ViT模型Segformer作为基线模型,在其掩码分割前嵌入置换注意力(Shuffle Attention,SA)机制,以更好地捕获特征信息在空间和通道这2个维度中的依赖关系,从而提高模型的分割精度;其次,在多层感知机(Multilayer Perceptron,MLP)中加入上下文广播(Context Broadcasting,CB)模块,在保证模型低参数量的前提下提高泛化能力;最后,基于模型分割结果,提出一种焊接偏差计算方法来定量描述偏差检测精度。实验结果表明,相较于基线模型,所提出模型的平均交并比和平均像素准确率分别提高了2.67 %和2.12 %,且对于不同预设焊枪偏移情况均具有良好的泛化性,焊接偏差精度控制在±0.021 mm之内,为实现精密焊接焊缝跟踪提供基础。

关键词: 焊接偏差, 焊缝跟踪, 熔池识别, 视觉转换器, 注意力机制

Abstract: Accurate detection of welding deviations is a prerequisite for automatic seam tracking and intelligent welding by welding robots.An improved ViT-based method for molten pool recognition and online detection of welding deviation was proposed. Firstly,the lightweight ViT model Segformer was used as the baseline model. The Shuffle Attention (SA) was embedded before mask segmentation to better capture the dependencies of feature information in both spatial and channel dimensions. Thus,the model's segmentation accuracy was enhanced.Secondly,a Context Broadcasting (CB) module was added to the Multilayer Perceptron (MLP) to improve the generalization capability while ensuring low parameters of model. Finally,based on the model segmentation results,a welding deviation calculation method was proposed to quantitatively describe the deviation detection accuracy. The experimental results show that,compared with the baseline model,the mean intersection over union and mean pixel accuracy of proposed model were increased by 2.67 % and 2.12 %,respectively,and it has good generalization for different preset torch offsets. The welding deviation accuracy was controlled between ±0.021 mm,which provided a basis for seam tracking in precision welding.

Key words: welding deviation, seam tracking, molten pool recognition, Vision Transformer (ViT), attention mechanism

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: