[1] 邓钢,赵庆华,祁光威,等.基于YOLOv5的铝合金型材表面缺陷检测方法研究[J].现代制造工程,2023(11):120-128. [2] 薛阳,丁凯,李清,等.基于改进YOLOv5s的活塞杆表面缺陷检测[J].现代制造工程,2023(11):104-112. [3] 邓光伟,尤红权,朱志松.基于KCC-YOLOv5的铝型材表面缺陷检测[J].激光与光电子学进展,2024,61(4):231-239. [4] 席凌飞,伊力哈木·亚尔买买提,刘雅洁.基于改进YOLOv5的铝型材表面缺陷检测方法[J].广西师范大学学报(自然科学版),2024,42(1):111-119. [5] JIANG L J,YUAN B X,WANG Y Q,et al. MA-YOLO:a method for detecting surface defects of aluminum profiles with attention guidance[J].IEEE Access,2023,11:71269-71286. [6] LI B,REN F J,NI H J,et al. Classification method of surface defects of aluminum profile based on transfer learning[C]//2022 International Conference on Machine Learning and Intelligent Systems Engineering(MLISE).[S.l.]:IEEE,2022:1-5. [7] LI W K,LIU Y J,ZHANG W H. Aluminum flake defect detection based on improved less sample generation algorithm[C]//2023 IEEE 5th Eurasia Conference on IOT,Communication and Engineering(ECICE).[S.l.]:IEEE,2023:327-330. [8] 陈俊英,黄汉涛,李朝阳.特征增强和度量优化的钢材表面缺陷检测[J/OL].激光与光电子学进展:1-16[2024-05-10].http://kns.cnki.net/kcms/detail/31.1690.TN.20240508.0953.068.html. [9] ZHANG R,WEN C B.SOD-YOLO:a small target defect detection algorithm for wind turbine blades based on improved YOLOv5[J].Advanced Theory and Simulations,2022,5(7):2100631. [10] 胡清翔,饶文碧,熊盛武.面向无人机遥感场景的轻量级小目标检测算法[J].计算机工程,2023,49(12):169-177. [11] 汤文虎,吴龙,黎尧,等.基于改进Faster RCNN的钢线圈头部小目标检测算法[J].现代制造工程,2023(8):127-133,147. [12] ZHAO Y A,LV W Y,XU S L,et al.Detrs beat yolos on real-time object detection[J].arXiv preprint arXiv:2023,2304.08069. [13] ZHANG X,LIU C,YANG D G,et al. RFAConv:innovating spatital attention and standard convolutional operation[J].arXiv preprint arXiv:2023,2304.03198. [14] HAN K,WANG Y H,TIAN Q,et al. Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.[S.l.]:[s.n.],2020:1580-1589. [15] CHEN C P,GUO Z C,ZENG H E,et al.RepGhost:a hardware-efficient ghost module via Re-Parameterization[J].arXiv preprint arXiv:2022,2211.06088. [16] TONG Z J,CHEN Y H,XU Z W,et al.Wise-IoU:bounding box regression loss with dynamic focusing mechanism[J].arXiv preprint arXiv:2023,2301.10051. [17] 阿里云.广东工业智造大数据创新大赛[EB/OL].(2018-08-15)[2024-05-08].https://tianchi.aliyun.com/markets/tiachi/industry. [18] ZHANG H,ZHANG S J.Shape-IoU:more accurate metric considering bounding box shape and scale[J].arXiv preprint arXiv:2023,2312.17663. [19] ZHANG H,XU C,ZHANG S J.Inner-IoU:more effective intersection over union loss with auxiliary bounding box[J].arXiv preprint arXiv:2023,2311.02877. [20] BAO Y Q,SONG K C,LIU J,et al.Triplet-graph reasoning network for few-shot metal generic surface defect segmentation[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11. [21] HARIHARAN B,ARBELAEZ P,BOURDEV L,et al.Semantic contours from inverse detectors[C]//2011 international conference on computer vision.[S.l.]:IEEE,2011:991-998. |