现代制造工程 ›› 2025, Vol. 533 ›› Issue (2): 101-108.doi: 10.16731/j.cnki.1671-3133.2025.02.013

• 仪器仪表/ 检测/ 监控 • 上一篇    下一篇

基于自编码器GAN数据增强的工业小目标缺陷检测*

周思聪1,2, 向峰1,2, 李红军3, 左颖4   

  1. 1 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081;
    2 武汉科技大学冶金装备与控制技术教育部重点实验室,武汉 430081;
    3 武汉纺织大学机械工程与自动化学院,武汉 430073;
    4 北京航空航天大学自动化科学与电气工程学院,北京 100191
  • 收稿日期:2024-03-13 发布日期:2025-02-27
  • 通讯作者: 周思聪,硕士研究生,主要研究方向为深度学习、图像处理和面向服务的智能制造等。E-mail:545367342@qq.com
  • 作者简介:向峰,博士,教授,主要研究方向为面向服务的智能制造、制造服务、数字孪生和绿色制造等。李红军,硕士,教授,主要研究方向为非标机械结构设计。左颖,博士,副研究员,主要研究方向为面向服务的绿色智能制造、数字孪生等。
  • 基金资助:
    *国家自然科学基金项目(51975431);中央高校基本科研业务费专项资助项目

Industrial small target defect detection based on improved GAN data enhancement

ZHOU Sicong1,2, XIANG Feng1,2, LI Hongjun3, ZUO Ying4   

  1. 1 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;
    2 Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;
    3 School of Mechanical Engineering and Automation,Wuhan Textile University,Wuhan 430073,China;
    4 School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
  • Received:2024-03-13 Published:2025-02-27

摘要: 工业缺陷图像样本是工业产品缺陷检测、分类和分级的基础数据。针对工业缺陷检测目前仍存在复杂环境下的目标检测困难、样本数量不足导致特征提取差等问题,提出了一种预训练的自编码器生成对抗网络。用预训练的自编码器代替基础生成对抗网络(GAN)的生成网络,引导生成网络更好地融合数据特征。结合目标图像的特征重新设计一个编码器-解码器损失函数来替换GAN的对抗损失函数。利用钢卷端面缺陷数据集进行试验。试验结果表明,经过改进GAN数据增强后,平均精度均值mAP0.5最高提升了0.118,对单类缺陷的检测准确率最高提升了0.138。

关键词: 生成对抗网络, 工业图像生成, 预训练自编码器, 缺陷检测

Abstract: Industrial defect image samples serve as fundamental data for industrial product defect detection,classification,and grading.To address the current challenges in industrial defect inspection,which include difficulties in target detection under complex environments and insufficient sample quantities resulting in poor feature extraction, a pre-trained autoencoder generative adversarial network was proposed.Pre-trained autoencoder was used to replace the generator network of the basic Generative Adversarial Network (GAN),facilitating better integration of data features by guiding the generator network.An encoder-decoder loss function was redesigned to replace the adversarial loss function of GAN by incorporating target image features.Experimental validation was conducted using a dataset of steel coil end-face defects.Experimental results indicate that after the improved GAN data augmentation,the mean Average Precision mAP0.5 increased by a maximum of 0.118,while the precision for single-class defect detection increased by a maximum of 0.138.

Key words: Generative Adversarial Network(GAN), industrial image generation, pre-trained autoencoder, defect detection

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: