现代制造工程 ›› 2017, Vol. 438 ›› Issue (3): 77-82.doi: 10.16731/j.cnki.1671-3133.2017.03.013

• 数控加工技术 • 上一篇    下一篇

基于混合粒子群算法的数控切削参数多目标优化

王宸1,2, 杨洋1, 袁海兵2, 王生怀2   

  1. 1上海大学上海市智能制造与机器人重点实验室,上海 200072
    2 湖北汽车工业学院机械工程学院,十堰 442002
  • 收稿日期:2016-08-21 出版日期:2017-03-18 发布日期:2018-01-08
  • 作者简介:王宸,通讯作者,讲师,博士研究生,主要从事智能制造等方向的研究。
    E-mail:wangc_jx@huat.edu.cn
  • 基金资助:
    湖北省教育厅重点项目(D20151803);湖北省教育厅重点项目(D20141802);湖北省教育厅指导性项目(B2016084)

NC cutting parameters multi-objective optimization based on hybrid particle swarm algorithm

Wang Chen1,2, Yang Yang1, Yuan Haibing2, Wang Shenghuai2   

  1. 1 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,Shanghai University,Shanghai 200072,China
    2 School of Mechanical Engineering,Hubei Automotive Industries Institute,Shiyan 442002,Hubei,China
  • Received:2016-08-21 Online:2017-03-18 Published:2018-01-08

摘要: 为选择合理的数控切削用量,建立了加工成本和数控切削加工效率的数学模型。针对模型其多约束、非线性的特点,采用约束违背度方法处理约束条件。为避免算法陷入局部最优,两次引入Metropolis抽样准则,提出混合多目标粒子群优化算法(HMOPSO)求解。最后采用层次分析法选择最优Pareto解,并通过实例计算对所提出方法进行了验证。

关键词: 数控加工, 切削参数, 约束优化, 多目标粒子群优化, 模拟退火算法, Pareto最优解

Abstract: To choose the reasonable NC cutting parameter,the mathematical models for cost and machine efficiency of cutting parameters in cutting state were established.Aiming at the nonlinearity and multi-constraints of NC cutting parameters optimization problem,the constraint violation of method was used to process constraints.In order to avoid algorithm into local optimum,algorithm introduced Metropolis twice sampling criteria twice.An optimization method based on Hybrid Multi-Objective Particle Swarm Optimization (HMOPSO) algorithm was employed.Finally,validation calculation was successfully implemented through a cutting parameter optimization example.

Key words: numerical control machining, cutting parameters, constrained optimization, Multi-Objective Particle Swarm Optimization(MOPSO), SA, Pareto optimization

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: