[1] CHENG Yaonan,LIU li,SUN Shouhui,et al.Influence of thermal load on mechanical property of cemented carbide material and heavy cemented carbide inserts life[J].Journal of Harbin Institute of Technology(New Series),2013,20(6):59-66. [2] 程程,顾玉萍,赵佳梅,等.大型轴类锻件切削性及粗加工增效措施研究[J].工具技术,2010,44(11):67-70. [3] 严复钢,何耿煌,刘献礼.极端重载条件下高效切削刀具技术[J].哈尔滨理工大学学报,2011,16(6):11-16. [4] 张景利,何耿煌,李文涛,等.大型锻造件筒节切削加工性能及提高切削效率措施[J].机械工程师,2010(5):139-141. [5] 高宏力.切削加工过程中刀具磨损的智能监测技术研究[D].成都:西南交通大学,2005. [6] ADAM G Rehorn,JIANG Jin,PETER E Oban.State-of-the-art methods and resultsin tool condition monitoring:a review [J].Int J Adv Manuf Technol,2005(26):693-710. [7] PRASAD B S,SARCAR M M M,BEN B S.Development of a system for monitoring tool condition using acousto-optic emission signal in face turning—an experimental approach[J].International Journal of Advanced Manufacturing Technology,2010,51(1/2/3/4):57-67. [8] 申志刚.高速切削刀具磨损状态的智能监测技术研究[D].南京:南京航空航天大学,2009. [9] LANZETTA M.A new flexible high-resolution vision sensor for tool condition monitoring[J].Journa119l of Materials Processing Technology,2001,119(1):73-82. [10] 谢厚正,黄民.基于振动测试的数控机床刀具磨损监测方法[J].仪表技术与传感器,2013(2):73-75. [11] WONG Y S,YUEN W K,LEE K S,et al.Machine vision monitoring of tool wear[J].Proceeding of SPIE-The International Society for Optical Engineering,2008(3518):17-24. [12] PRASAD K N,RAMAMOORTHY B.Tool wear evaluation by stereo vision and prediction by artificial neural network[J].Journal of Materials Processing Technology,2010,112(1):43-52. [13] RYABOV O,MORI K,KASASHIMA N.In-process direct monitoring method for milling tool failures using a laser sensor[J].CIRP Annals-Manufacturing Technology,2016,45(1):97-100. [14] MATSUMURA Takashi,USUI Eiji.On-line tool wear compensation system in milling opertion[J].Technical Paper-Society of Manufacturing Engineers,2009(MR99-172):1-6. [15] 揭景耀.智能刀具状态监测系统研究与进展[J].中国机械工程,1997(6):60-63. [16] 胡秋.CIMS环境下刀具状态监测研究回顾与展望[J].机床与液压,2003(6):17-18. [17] 刘晓明.刀具破损监测系统的研究与开发[D].成都:电子科技大学,2005. [18] 李娜.基于人工智能的刀具切削状态的监控研究[D].兰州:兰州理工大学,2008. [19] SR D E D,LISTER P M.On-line metal cutting tool condition monitoring.I:force and vibration analyses[J].International Journal of Machine Tools & Manufacture,2010,40(5):739-768. [20] CHOUDHURY S K,RATH S.In-process tool wear estimation in milling using cutting force model[J].Journal of Materials Processing Technology,2000,99(1/2/3):113-119. [21] SAGLAM H ,UUNVAR A.Tool condition monitoring in milling based on cutting forces by a neural network[J].International Journal of Production Research,2003,41(7):1519-1532. [22] SHAMOTO E,HINO R,UMESAKI M,et al.Intelligent Recognition of End Milling Conditions Based on Cutting Force Model(Development of Monitoring Method without Any Databases)[J].Transactions of the Japan Society of Mechanical Engineers C,2003,69(683):1927-1932. [23] LI X.A brief review: acoustic emission method for tool wear monitoring during turning[J].International Journal of Machine Tools & Manufacture,2002,42(2):157-165. [24] INASAKI I.Application of acoustic emission sensor for monitoring machining processes[J].Ultrasonics,2008,36(1/2/3/4/5):273-281. [25] QIANG S,CHENG S,JING K.Tool wear intelligence measure in cutting process based on HMM[J].Applied Mechanics & Materials,2011(52/53/54):482-487. [26] LI X.A brief review: acoustic emission method for tool wear monitoring during turning[J].International Journal of Machine Tools & Manufacture,2002,42(2):157-165. [27] LEI M,YANG X,YANG S.Tool Wear Length Estimation with a Self-Learning Fuzzy Inference Algorithm in Finish Milling[J].International Journal of Advanced Manufacturing Technology,2009,15(8):537-545. [28] JESU'S R R D,GILBERTO H R.Driver current analysis for sensorless tool breakage monitoring of CNC milling machines[J].International Journal of Machine Tools & Manufacture,2003,43(15):1529-1534. [29] 王军平,敬忠良,王安.基于随机模糊神经网络的刀具磨损量软测量技术[J].信息与控制,2002,31(6):534-537. [30] MAN-LI L V,SUN L F.Multi-sensor Information Fusion Technology[J].Techniques of Automation & Applications,2008,10(6):428-432. [31] SHENG Z Q,TANG C P,FAN H T,et al.Application of Multi-Sensor Information Fusion Technology in Machine-Tool Monitoring[J].Applied Mechanics & Materials,2011(88/89):714-717. [32] MENG L W,GAO J P,XIN M Y,et al.Application of Multi-sensor Information Fusion Technology on Fault Diagnosis of Electrical System[J].ITM Web of Conferences,2017(11). [33] GARRT O’ Donnell,PUAL Young,KEVIN Kelly, et al.Towards the improvement of tool condition monitoring system in the manufacturing environment[J].Journal of Materials Processing Technology,2014(119):133-139. [34] JANTUNEN E,JOKINEN H.Automated on-line diagnosis of cutting tool condition[J].International Journal of Flexible Automation and Integrated Manufacturing,2016,4(3/4):273-287. [35] HUTTON D V,HU F.Aeoustic emission monitoring of tool wear in end-milling using time-domain averaging[J].Journal of Manufacturing Seience and Engineering,2016,121(1): 8-12. [36] 刘献礼,刘强,岳彩旭,等.切削过程中的智能技术[J].机械工程学报,2017,6(49):1-17. [37] 陈道全,刘伯兴,吴家奎,等.重型切削加工刀具失效监控系统的开发[J].装备制造技术,2015( 8):83-86.
|