现代制造工程 ›› 2017, Vol. 441 ›› Issue (6): 37-44.doi: 10.16731/j.cnki.1671-3133.2017.06.007

• 试验研究 • 上一篇    下一篇

工程机械备件需求特征分类模型

罗薇1,2, 符卓1   

  1. 1 中南大学交通运输工程学院,长沙 410075;
    2 桂林理工大学管理学院,桂林 541004
  • 收稿日期:2016-03-22 出版日期:2017-06-18 发布日期:2017-09-26
  • 作者简介:罗薇,博士研究生,副教授,主要研究方向:物流工程。 符卓,博士生导师,教授,主要研究方向:物流工程,交通运输规划与管理。 E-mail:39677920@qq.com
  • 基金资助:
    国家自然科学基金资助项目(71271220);广西高校人文社会科学重点研究基地基金资助项目(QN001)

Demand characteristic classification model of engineering machinery spare parts

Luo Wei1,2, Fu Zhuo1   

  1. 1 School of Traffic & Transportation Engineering,Central South University,Changsha 410075,China;
    2 School of management,Guilin University of Technology,Guilin 541004,Guangxi,China
  • Received:2016-03-22 Online:2017-06-18 Published:2017-09-26

摘要: 针对工程机械备件需求的随机性、多样性及分类指标复杂等特点提出一个两阶段分类方法。第一阶段根据工程机械备件需求时间序列的平稳性把备件分两类;第二阶段综合影响备件分类的价值、服务及时间等因素,将粗糙集理论(Rough Set,RS)与自组织映射(Self-Organizing Map,SOM)神经网络相结合,设计RS-SOM聚类模型。先用模糊C均值聚类算法对指标数据进行离散化处理,再用改进的分明矩阵算法对指标集进行降维处理,在基于核的SOM模型中,通过引入粗糙集理论的上、下近似集来改进SOM训练过程,最后得到工程机械备件的聚类结果。数据实验证明,与ABC分类法和传统的SOM聚类方法相比,该方法能综合考虑各种影响因素对备件分类的影响,并能明确区分需求变动趋势不同的备件,为工程机械备件需求预测和库存控制提供可靠的依据。

关键词: 工程机械备件, 两阶段分类法, 需求时间序列, 粗糙集, 自组织映射神经网络

Abstract: A two-stage classification method is proposed for engineering machinery spare parts aiming at the characteristics of randomness,diversity and complexity.In the first stage,the spare parts are divided into two categories according to the stability of the service spare demand time series.In the second stage,combined with the factors such as the value,service,time and other factors of the spare parts classification,the Rough Set (RS) theory and Self-Organizing Map (SOM) neural network are combined to design the RS-SOM clustering model.The index data are discretized by using fuzzy c-means clustering algorithm.Then the improved matrix algorithm is used to reduce the index set.In the kernel based SOM model,the training process is improved by introducing rough set theory.Finally,the clustering results of engineering machinery spare parts are obtained.Data experiments show that compared with the method of the ABC classification method and the traditional SOM clustering method,the classification result is better and it can provide a more reliable basis for the selection of the spare parts forecasting method and inventory strategy.

Key words: engineering machinery spare parts, two-stage classification method, requirement time series, rough set, self organizing map neural network

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: