[1] 封慧.曲轴轴颈损伤表面的激光熔覆再制造修复[J].中国激光, 2014,41(8): 1-6. [2] 董文仲. 曲轴铁基合金镀铁再制造技术工艺应用研究[J].柴油机, 2011, 33(2): 43-46. [3] 梁秀兵. 自动化高速电弧喷涂技术再制造发动机曲轴[J]. 中国表面工程, 2010, 23(2): 112-116. [4] 董世运. 发动机旧连杆缺陷超声检测研究[J]. 失效分析与预防, 2011, 6(1): 19-22. [5] 周迅. 曲轴疲劳行为及可靠性的理论与实验研究[D]. 杭州: 浙江大学, 2006. [6] 吴波. 柴油机连杆疲劳失效的影响因素分析[J]. 机械制造, 2010,5(48): 60-62. [7] 王仕勤. 柴油机主连杆断裂原因分析[J]. 热加工工艺, 2010,6(16): 174-176. [8] 陆伟. 激光熔覆高速线材轧辊熔覆层开裂问题的研究[D]. 北京: 北京工业大学, 2006. [9] 毛怀东. 激光熔覆过程中裂纹在线研究[J]. 应用激光, 2007, 27(3): 186-191. [10] 孙威. 化学气相沉积ZrC涂层的缺陷形成机制及控制[J].中国有色金属学报, 2013, 23 (6): 1611-1617. [11] HSUEH C H, HAYNES J A,LANCE M J, et al, Effects of Interface Roughness on Residual Stresses in Thermal Barrier Coatings[J].J.Am.Ceram.Soc,1999,82(4):1073-1076. [12] ALES Materna. Elastic-plastic FEM investigation of the thickness effect on fatigue crack growth[J]. Procedia Engineering, 2011, 10(6): 1109-1114. [13] HUANG H S. Fracture Characteristics Analysis of Pressured Pipeline with Crack Using Boundary Element Method[J]. Advances in Materials Science and Engineering,2015(1). [14] NIKOLSKIY D V. Complex variables boundary element analysis of three-dimensional crack problems[J]. Engineering Analysis with Boundary Elements, 2013, 37(11):1532-1544. [15] EDSON DENNER Leonel. Multiple random crack propagation using a boundary element formulation[J]. Engineering Fracture Mechanics, 2010, 78(6): 1077-1090. [16] AZAM Tafreshi. Simulation of crack propagation in anisotropic structures using the boundary element shape sensitivities and optimisation techniques[J]. Engineering Analysis with Boundary Elements, 2011, 35(8): 984-995. [17] ZHUANG X Y. A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields[J]. Theoretical and Applied Fracture Mechanics, 2014, 69(13): 118-125. [18] HIMANSHU Pathak. Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method[J]. Applied Mathematical Modelling, 2014, 38(13): 3093-3123. [19] HU Y J. An element-free Galerkin method for 3D crack propagation simulation under complicated stress conditions[J]. International Journal for Numerical Methods in Engineering, 2012, 91(12): 1251-1262. [20] MOHIT Pant. Numerical simulation of thermo-elastic fracture problems using element free Galerkin method[J]. International Journal of Mechanical Sciences, 2010, 52(12): 1745-1755. [21] MOTAMEDI D. Dynamic crack propagation analysis of orthotropic media by the extended finite element method[J]. International Journal of Fracture, 2010, 161(1): 21-39. [22] ZHANG B J. Ductile failure analysis and crack behavior of X65 buried pipes using extended finite element method[J]. Engineering Failure Analysis, 2014, 45(1):26-40. [23] BHATTACHARYA S. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM[J].Computational Mechanics, 2013, 52(4): 799-814. [24] HIMANSHU Pathak. Fatigue crack growth simulations of 3D problems using XFEM[J]. International Journal of Mechanical Sciences, 2013, 76(5): 112-131. [25] 刘伟. 二维裂纹扩展数值模拟及疲劳寿命预测[D]. 济南:山东大学, 2014. [26] 茹忠亮, 朱传锐, 张友良. 断裂问题的扩展有限元法研究[J]. 岩土力学, 2011, 5 (7): 2171-2176. [27] ALSHOAIBI A M. Development of efficient finite element Software of Crack Propagation Simulation using Adaptive Mesh Strategy[J]. American Journal of Applied Sciences, 2009, 6(4): 661-667. [28] 黄向平. 裂纹跟踪的网格生成技术[J]. 上海交通大学学报, 2001, 35 (4): 493-495. [29] MARIANA R R Seabra. Damage driven crack initiation and propagation in ductile metals using XFEM[J]. Computational Mechanics, 2013, 52(1): 161-179. [30] RETHORE J, GRAVOUIL A, COMBESCURE A. An energy conserving scheme for dynamic crack growth using the extended finite element method[J]. International Journal for Numerieal Methods in Engineering,2005,3(5):631-659. [31] AREIAS P, BELYTSCHKO T. Analysis of three-dimensional crack initiation and propagation using the extended finite element method[J]. International Journal for Numerieal Methods in Engineering, 2005, 6(5):760-788. [32] DUAM. Element-local level set method for three-dimension dynamic crack growth[J]. International Journal for Numerieal Methods in Engineering, 2009, 5(12): 1520-1543. [33] BAGDOWN M. Crack propagation criteria in three dimensions using the XFEM and an explicit-implicit crack description[J]. International Journal of fracture, 2012,5(1):51-70. [34] 楼小玲. 涂层/基体系统裂纹应力强度因子的数值研究[D]. 杭州:浙江工业大学, 2006. [35] 孙兵. TiN涂层裂纹三维有限元分析[D].成都: 西南交通大学, 2006. [36] 华丹. 等离子喷涂热障涂层微裂纹模拟研究[J].材料热处理技术, 2010, 39 (22): 87-93. [37] MARTIN Baker. Simulation of crack propagation in thermal barrier coatings with friction[J]. Computational Materials Science, 2012, 52(1): 236-239. [38] MILAN M T,BOWEN P. Experimental and predicted fatigue crack growth resistance in Al2124/Al2124+35%SiC(3μm) bi-material[J].International Journal of Fatigue,2003, 5(25):649-659. [39] 张国祥. 基体界面屈服强度和残余应力失配对界面裂纹扩展的影响[J]. 吉林大学学报(工学版), 2006, 3(36):34-38. [40] LI X N.Thickness-dependent fracture characteristics of ceramic coatings bonded on the alloy substrates[J]. Surface and Coatings Technology, 2014, 258(1039):54-58. [41] WOONG Lee. Reconsideration of crack deflection at planar interfaces in layered systems[J].Composites Science and Technology, 2004, 5(64):2415-2423. |