现代制造工程 ›› 2018, Vol. 457 ›› Issue (10): 123-129.doi: 10.16731/j.cnki.1671-3133.2018.10.020

• 仪器仪表/检测/监控 • 上一篇    下一篇

金属疲劳过程磁记忆信号多特征量提取研究

朱达荣1,2, 潘志远1,2, 刘涛1,2, 徐德军1,2   

  1. 1 安徽建筑大学机械与电气工程学院,合肥 230601;
    2 安徽建筑大学建筑机械故障诊断与预警技术重点实验室,合肥 230601
  • 收稿日期:2016-12-23 出版日期:2018-10-20 发布日期:2019-01-07
  • 作者简介:朱达荣,研究员,硕士生导师,主要从事图像处理、故障诊断和智能仪器仪表等方面的研究。潘志远,硕士研究生,主要从事信号处理、状态监测和故障诊断等方面研究。刘涛,通信作者,博士,讲师,主要从事可持续制造、无损检测等方面的研究。E-mail:tao.liu@ahjzu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51805003,61871002);安徽省自然科学基金项目(18080885ME125);安徽省高校自然科学研究项目(KJ2018A0519)

The magnetic memory signal wavelet packet frequency band energy feature extraction

Zhu Darong1,2, Pan Zhiyuan1,2, Liu Tao1,2, Xu Dejun1,2   

  1. 1 School of Mechanical and Electrical Engineering,Anhui Jianzhu University,Hefei 230601,China;
    2 Key Laboratory of Construction Machinery Fault Diagnosis and Early Warning Technology of Anhui Jianzhu University, Hefei 230601,China
  • Received:2016-12-23 Online:2018-10-20 Published:2019-01-07

摘要: 为明确铁磁构件疲劳过程磁记忆信号的变化规律,实现疲劳损伤的量化评估,选取带中心圆孔的Q235钢试件进行轴向拉伸疲劳试验,通过三维运动平台实现磁记忆信号的稳定连续采集,以小波变换为信号多尺度分析工具,对磁记忆信号进行降噪,并采用小波包进行磁记忆信号分解与重构,提取信号的小波包能量、奇异性指数作为特征量,得到了不同频带上相对能量分布和奇异性指数的变化规律,并将能量、奇异性指数与信号梯度峰值相结合,共同构成评估疲劳损伤的多特征量。试验结果表明:试件疲劳损伤过程中能量、奇异性指数和梯度峰值变化显著,随着循环次数的增加,低频段能量不断增加,高频段能量占总能量比例不断降低,总能量分布向低频段偏移,同时奇异性指数不断减小,而各阶段梯度峰值逐渐增加。通过能量、奇异性指数和梯度峰值的多特征量的研究可以弥补单一特征量存在的不足,研究结果可为金属构件疲劳损伤程度的评估提供技术支撑。

关键词: 磁记忆信号, 小波变换, 能量, 奇异性指数, 梯度峰值, 特征提取

Abstract: In order to identify the way how the magnetic memory signals of ferromagnetic materials change during the fatigue process and to make quantitative assessment of fatigue damage,an axial tensile fatigue test with holed-cracked Q235 plate specimen as objects is designed.It goes like this:The magnetic memory signals can be collected steadily with the aid of three dimensional motion stage,and the noises accompanying are reduced by a multi-scale analysis tool of wavelet transform signal.Then such magnetic signals are decomposed and reconstructed with wavelet packet to extract the wavelet packet energy,singularity indexes,maximum gradient values Extraction and characteristics.Therefore,how the relative energy distributes in bands can be detected and how the singularity indexes change is also discovered.The obtained wavelet packet energy,singularity indexes and signal gradient value are combined as multi-characteristic vectors,serving to assess fatigue damage.The results indicate that the wavelet packet energy,singularity indexes and maximum gradient values Extraction change obviously amid the fatigue damage process.Such energy is ever increasing in the lower frequency band and decreasing in the higher.Total energy distribution starts shifting to focus on the lower one.Meanwhile,singularity indexes begin to decrease,yet the gradient peak values in different stages increase.With these multi-characteristic vectors that can make up the inherent deficiency of single characteristic adopted previously,the result promises to provide technique support for evaluating the fatigue damage of metal components.

Key words: magnetic signals, wavelet transform, energy, singularity indexes, maximum gradient values, feature extraction

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: