摘要: 在现有轨道车辆轴承温度预警研究中,因监测数据复杂度不一致导致特征难以选择,同时现有预警方法往往只能在轴承故障发生前的几分钟进行预警,为此,提出一种基于特征选择的轨道车辆轴承温度预警方法。首先采用皮尔逊系数计算特征相关性后分析引入关联轴承,然后依据线性相关性将低线性相关特征数据与关联轴承数据一起输入LightGBM模型,以对特征进行再次选择;其次,利用大量正常状态下的履历数据,基于深度学习模型双向门控循环单元构建轴承温度预测模型;最后利用某轨道车辆实测数据进行预警方法验证。结果表明:对于正常轴承,轴承温度预测模型的温度预测值和实际值的差异小于4℃且稳定;而对于异常轴承,在轴承故障发生前的数小时即可发现两者间存在大于4℃以上的持续显著差异。
中图分类号:
版权所有 © 《现代制造工程》编辑部 地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 访问总数:,当日访问:,当前在线: |