[1] RAY A, TANGIRALA S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics[J]. IEEE Transactions on Control Systems Technology,1996(4):443-451. [2] LI Y, KURFESS T R, LIANG S Y. Stochastic prognostics for rolling element bearings[J]. Mechanical Systems and Signal Processing,2000,14(5):747-762. [3] HU G, GAO S, ZHONG Y, et al. Modified strong tracking unscented Kalman filter for nonlinear state estimation with process model uncertainty[J]. International Journal of Adaptive Control and Signal Processing,2015,29(12):1561-1577. [4] 李伟.基于模糊综合评判的高压断路器状态评估方法研究[D].重庆:重庆大学,2004. [5] 国连玉.基于云模型和灰色模糊综合评判的高压断路器状态评估[D].山东:山东大学,2015. [6] 郭少飞,徐玉琴,苑立国,等.基于模糊综合评判和支持向量回归的变压器状态评估方法[J].电力科学与工程,2012,28(9):5-9. [7] DIEZ-OLIVAN A, PAGAN J A, KHOA N L D, et al. Kernel-based support vector machines for automated health status assessment in monitoring sensor data[J]. The International Journal of Advanced Manufacturing Technology,2018,95(1):327-340. [8] CAESARENDRA W, WIDODO A, THOM P H, et al. Combined probability approach and indirect Data-Driven method for bearing degradation prognostics[J]. IEEE Transactions on Reliability,2011,60(1):14-20. [9] 廖广纯.数据驱动的设备健康评估与维修决策[D].武汉:华中科技大学,2016. [10] ZHANG W, ZHANG G B, RAN Y, et al. The full-state reliability model and evaluation technology of mechatronic product based on meta-action unit[J]. Advances in Mechanical Engineering,2018,10(5):1-11. [11] 许焕卫,黄鑫,黄洪钟,等.多退化指标条件下卫星动量轮可靠性建模与评估[J].机械工程学报,2022,58(17):67-74. [12] 庾辉.机械元动作故障及其形成机理研究[D].重庆:重庆大学,2021. [13] ASHKEZARI A D, MA H, SAHA T K, et al. Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013,20(3):965-973. [14] YANG F, HABIBULLAH M S, ZHANG T, et al. Health index based prognostics for remaining useful life predictions in electrical machines[J]. IEEE Transactions on Industrial Electronics,2016,63(4):2633-2644. [15] BEHZADIAN M, OTAGHSARA S K, YAZDANI M, et al. A state-of the-art survey of topsis applications[J]. Expert Systems with Applications,2012,39(17):13051-13069. [16] 潘成龙.基于逼近理想解法-灰色聚类的数控机床健康状态评估[D].武汉:华中科技大学,2018. [17] 姚荣麟.基于状态监测数据的数控刀架健康状态评估研究[D].长春:吉林大学,2021. [18] 胡弦.机床数控装置的健康状态评估方法研究[D].杭州:浙江理工大学,2021. [19] 黄必清,何焱,王婷艳.基于模糊综合评价的海上直驱风电机组运行状态评估[J].清华大学学报(自然科学版),2015, 55(5):543-549. |