现代制造工程 ›› 2024, Vol. 524 ›› Issue (5): 23-30.doi: 10.16731/j.cnki.1671-3133.2024.05.004

• 先进制造系统管理运作 • 上一篇    下一篇

考虑运输时间的混合流水车间绿色生产调度

唐艺军, 杜纪浩, 李雪   

  1. 辽宁工程技术大学工商管理学院,葫芦岛 125000
  • 收稿日期:2023-09-03 出版日期:2024-05-18 发布日期:2024-05-30
  • 通讯作者: 杜纪浩,硕士研究生,主要研究方向为生产建模与仿真。
  • 作者简介:唐艺军,硕士,副教授,主要研究方向为生产建模与仿真。E-mail:1574072260@qq.com

Green production scheduling of hybrid flow shop considering transportation time

TANG Yijun, DU Jihao, LI Xue   

  1. College of Business Administration,Liaoning Technical University,Huludao 125000,China
  • Received:2023-09-03 Online:2024-05-18 Published:2024-05-30

摘要: 针对运输时间对混合流水车间绿色生产调度的影响这一问题,以最大完工时间、生产能耗及生产成本为优化目标,提出一种改进的多目标麻雀搜索算法(Improved Multi-Objective Sparrow Search Algorithm,IMOSSA)进行求解,参考非支配排序将种群适应度值进行划分、引入正余弦策略提高解集质量、加入多项式变异算子和Levy飞行,提高解集的收敛速度和全局搜索能力,避免陷入局部最优。而后设计16种测试算例,将IMOSSA与其他多目标优化算法进行对比,验证了IMOSSA求解的优越性。最后,以某实际生产车间为例,将其生产调度划分为4种模式,证明算法求解的实用性。

关键词: 混合流水车间, 绿色生产调度, 不相关并行机, 运输时间, 多目标麻雀搜索算法

Abstract: Aiming at the influence of transportation time on green production scheduling of mixed flow workshop,the maximum completion time,production energy consumption and production cost were taken as optimization objectives. An Improved Multi-Objective Sparrow Search Algorithm (IMOSSA) was proposed to solve the problem. The fitness values of the population were divided by reference to non-dominated ordering,the quality of the solution set was improved by introducing sine-cosine strategy,and the convergence speed and global search ability of the solution set were improved by adding polynomial mutation operators and Levy flight,so as to avoid falling into local optimality. Then 16 test examples were designed to compare IMOSSA with other multi-objective optimization algorithms to verify the superiority of IMOSSA solution. Finally,taking an actual production workshop as an example,the production scheduling was divided into four modes to prove the practicability of the algorithm.

Key words: mixing flow shop, green production scheduling, unrelated parallel machines, transit time, Multi-Objective Sparrow Search Algorithm (MOSSA)

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: