现代制造工程 ›› 2024, Vol. 529 ›› Issue (10): 9-15.doi: 10.16731/j.cnki.1671-3133.2024.10.002

• 先进制造系统管理运作 • 上一篇    下一篇

考虑技能学习差异的多工人协作柔性车间调度*

李钊1, 温承钦1, 黄维忠1, 朱海强1, 覃丽燕1, 周绍鹏1, 郑玲2   

  1. 1 广西物流职业技术学院,贵港 537100;
    2 重庆大学,重庆 400030
  • 收稿日期:2024-05-13 发布日期:2024-10-29
  • 通讯作者: 温承钦,硕士,教授,主要研究方向为汽车制造、计算机辅助设计。
  • 作者简介:李钊,硕士,副教授,主要研究方向为物流设计、企业管理和高职教育技术等。E-mail:wllizhao2024@163.com
  • 基金资助:
    *广西高校中青年教师科研基础能力提升项目(2023KY2050);自治区教育厅广西职业院校结对帮扶项目(ZZ08)

Multi-worker cooperative flexible job shop scheduling considering skill learning difference

LI Zhao1, WEN Chengqin1, HUANG Weizhong1, ZHU Haiqiang1, QIN Liyan1, ZHOU Shaopeng1, ZHENG Ling2   

  1. 1 Guangxi Logistics Vocational And Technical College,Guigang 537100,China;
    2 Chongqing University,Chongqing 400030,China
  • Received:2024-05-13 Published:2024-10-29

摘要: 在考虑工人技能学习差异的基础上,为解决多工人协作柔性车间调度问题,提出了基于稀疏邻域带精英策略的快速非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm Ⅱ,NSGA-Ⅱ)的调度方法。对考虑技能学习差异的多工人协作柔性车间调度问题进行了描述,以车间工人学习能力为背景改进了DeJong学习模型,并建立了多工人协作柔性车间调度的多目标优化模型。在NSGA-Ⅱ基础上,引入了邻域稀疏度的选择方法,有效保留了信息丰富和多样化的染色体,并将稀疏邻域NSGA-Ⅱ应用于柔性车间调度问题求解。经实验验证,稀疏邻域NSGA-Ⅱ所得Pareto解集质量高于标准NSGA-Ⅱ和自适应多目标进化算法(Multiobjective Evolutionary Algorithm Based on Decomposition,MOEA/D),最短调度方案的完工时间为127.1 min,该方案满足逻辑和时间等约束。实验结果验证了稀疏邻域NSGA-Ⅱ在柔性车间调度中的优越性。

关键词: 多工人协作, 柔性车间调度, 技能学习差异, 改进DeJong学习模型, 稀疏邻域带精英策略的快速非支配排序遗传算法

Abstract: On the basis of considering the difference of workers′ skill learning ability,in order to solve the scheduling problem of multi-worker cooperative flexible workshop,a scheduling method based on sparse neighborhood Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) was proposed. The multi-person cooperative flexible job shop scheduling problem under the premise of considering the difference of learning ability was described. The DeJong learning model was improved,and the multi-objective optimization model of multi-person cooperative flexible job shop scheduling was established. On the basis of NSGA-Ⅱ algorithm,the selection method of neighborhood sparsity was introduced,which effectively retained the chromosomes with rich information and diversity,and then the sparse neighborhood NSGA-Ⅱ was applied to solve the scheduling problem. The experimental results show that the Pareto solution set quality of the sparse neighborhood NSGA-Ⅱ is higher than that of the standard NSGA-Ⅱ and the adaptive Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D), and the time of the shortest completion time scheduling scheme is 127.1 min,which meets the constraints of logic and time. The experimental results verify the superiority of sparse neighborhood NSGA-Ⅱ in flexible job shop scheduling.

Key words: multi-worker collaboration, flexible job shop scheduling, differences in skill learning, improved DeJong learning model, sparse neighborhood Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ)

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: