[1] 贺捷,贺良国.EGR冷却器对柴油机NOX排放的影响[J].内燃机与配件,2021(3):38-39. [2] 杨川.废气旁通EGR分层燃烧及其控制的数值模拟[D].重庆:重庆大学,2022. [3] FATHALLAH A Y A M.The Experiment Study of Performance,Combustion Process and NOEmission of Diesel Engine with EGR System Using Angle Globe Valve[J].American Journal of Engineering & Applied Sciences,2018,11(1):218-226. [4] 范尊国,安伟,张振,等.柴油机EGR冷却器仿真和试验[J].内燃机学报,2013,31(6):564-568. [5] 王琦玮,倪计民,陈泓,等.文丘里管废气再循环系统对涡轮增压柴油机性能影响的研究[J].机械工程学报,2016,52(4):157-164. [6] TAO F,XIAO B,QI Q,et al.Digital twin modeling[J].Journal of Manufacturing Systems,2022,64:372-389. [7] LENG B,GAO S,XIA T,et al.Digital twin monitoring and simulation integrated platform for reconfigurable manufacturing systems[J].Advanced Engineering Informatics,2023,58:102141. [8] 宋学官,来孝楠,何西旺,等.重大装备形性一体化数字孪生关键技术[J].机械工程学报,2022,58(10):298-325. [9] 徐朋月,刘攀,郑肖飞.数字孪生在制造业中的应用研究综述[J].现代制造工程,2023(2):128-136. [10] LAI X N,WANG S,GUO Z G,et al.Designing a Shape-Performance Integrated Digital Twin Based on Multiple Models and Dynamic Data:A Boom Crane Example[J].Journal of Mechanical Design,2021,143(7):1-15. [11] 林牧,刘凯,王乃永,等.换流变阀侧套管数字孪生建模及热特性分析[J].高电压技术,2022,48(5):1653-1662. [12] 王剑,王好臣,李学伟,等.基于OPC UA的数字孪生车间信息物理融合系统[J].现代制造工程,2023(4):43-50. [13] LIU S,LU S,LI J,et al.Machining process-oriented monitoring method based on digital twin via augmented reality[J]. The International Journal of Advanced Manufacturing Technology,2021,113(11/12):1-18. [14] 潘帅,于正林.基于数字孪生的光纤绕线机实时监控方法研究[J].现代制造工程,2023(4):124-129. [15] 刘明浩,岳彩旭,夏伟,等.基于数字孪生的铣刀状态实时监控[J].计算机集成制造系统,2023,29(6):2118-2129. [16] CUI Z,YANG X,YUE J,et al.A review of digital twin technology for electromechanical products:evolution focus throughout key lifecycle phases[J].Journal of Manufacturing Systems,2023,70:264-287. [17] 陶飞,张贺,戚庆林,等.数字孪生模型构建理论及应用[J].计算机集成制造系统,2021,27(1):1-15. [18] YUKSEL H,ALTUNAY Ö.Host-to-host TCP/IP connection over serial ports using visible light communication[J].Physical Communication,2020,43:101222. [19] 林言中,陈兵,徐旭.径向基函数插值方法在动网格技术中的应用[J].计算物理,2012,29(2):191-197. [20] WANG J,XU G,YUAN P,et al.An efficient and versatile Kriging-based active learning method for structural reliability analysis[J].Reliability Engineering & System Safety,2024,241:109670. [21] SUN M,LAN L,ZHU C-G,et al.Cubic spline interpolation with optimal end conditions[J].Journal of Computational and Applied Mathematics,2023,425:115039. |