现代制造工程 ›› 2024, Vol. 531 ›› Issue (12): 37-47.doi: 10.16731/j.cnki.1671-3133.2024.12.005

• 智能制造 • 上一篇    下一篇

基于NARX神经网络系统辨识的振动台迭代学习控制研究*

郭迎庆1, 朱文1, 刘少帅1, 李世东2, 景兴建3, 徐赵东2   

  1. 1 南京林业大学机械电子工程学院,南京 210016;
    2 东南大学中国巴基斯坦“一带一路”重大基础设施智能防灾联合实验室,南京 210096;
    3 香港城市大学机械电子工程学院,香港 999077
  • 收稿日期:2024-06-24 出版日期:2024-12-18 发布日期:2024-12-24
  • 作者简介:郭迎庆,博士,教授,主要研究方向为智能控制。E-mail:gyingqing@126.com
  • 基金资助:
    *国家自然科学基金面上项目(52278505)

Study on iterative learning control of shaker based on NARX neural network system identification

GUO Yingqing1, ZHU Wen1, LIU Shaoshuai1, LI Shidong2, JING Xingjian3, XU Zhaodong2   

  1. 1 School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210016,China;
    2 Joint Laboratory of Intelligent Disaster Prevention for China-Pakistan “Belt and Road” Major Infrastructure, Southeast University,Nanjing 210096,China;
    3 School of Mechanical and Electronic Engineering,City University of Hong Kong,Hong Kong 999077,China
  • Received:2024-06-24 Online:2024-12-18 Published:2024-12-24

摘要: 针对传统振动台台面控制效果不佳的问题,提出了一种自适应迭代学习控制算法,该算法在原有的位移三参量控制系统基础上构建外部位移闭环,形成双闭环控制系统。同时为更准确地模拟振动台的动态行为,引入灰狼优化(GWO)算法优化非线性有源自回归(NARX)神经网络对振动台模型辨识。仿真结果表明,利用GWO-NARX神经网络进行振动台模型辨识,取得了较高的辨识效果,精度可达99.8 %。在辨识模型的基础上,利用自适应迭代学习控制算法极大地提高了振动台的控制精度,最大误差较原系统下降了49.6 %。与传统的NARX神经网络进行振动台模型辨识相比,GWO-NARX神经网络辨识效果更好,模型更贴近真实系统;与传统的三参量控制系统相比,自适应迭代学习控制算法提高了振动台波形复现精度,并且能够更好地适应系统的复杂性,为实际工程应用提供了可靠的技术支持和解决方案。

关键词: 电动式振动台, 自适应迭代学习, NARX神经网络, 系统辨识

Abstract: Aiming at the poor control effect of the traditional shaker,an adaptive iterative learning control algorithm was proposed,which constructs an external displacement closed-loop on the basis of the original displacement three-parameter control system to form a double closed-loop control system. At the same time,in order to more accurately simulate the dynamic behavior of the shaker,the Gray Wolf Optimization (GWO) algorithm was introduced to optimize the nonlinear organic originated regression neural network (Nonlinear Auto-Regressive with exogeneous inputs neural network,NARX) for shaker model identification. The simulation results show that the shaker model identification using GWO-NARX neural network achieves a high identification effect with an accuracy of 99.8 %. On the basis of identification model,the control accuracy of the shaker was greatly improved by using the adaptive iterative learning control algorithm,and the maximum error is reduced by 49.6 % compared with the original system. Compared with the traditional NARX neural network for shaker model identification,the GWO-NARX neural network has a better identification effect and the model is closer to the real system;compared with the traditional three-parameter control system,the adaptive iterative learning control algorithm improves the accuracy of shaker waveform reproduction and can better adapt to the complexity of the system. It provides reliable technical support and solutions for practical engineering applications.

Key words: electrodynamic shaker, adaptive iterative learning, NARX neural network, system identification

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: