[1] 王魁,代玉杰,翟乃尧.45Mn钢链板热处理后硬度低原因分析[J].金属加工(热加工),2022 (8):83-84. [2] 李枭.不同扫描方式下船舰发动机链条45Mn钢激光表面淬火的组织与力学性能研究[D].青岛:青岛理工大学,2023. [3] 张雪.疲劳短裂纹在残余应力场中的闭合和扩展[J].机械强度,2000 (2):137-138,123. [4] 王学德,聂祥樊,臧顺来,等.激光冲击强化“残余应力洞”的形成机制[J].强激光与粒子束,2014,26 (11):306-310. [5] 王成,李开发,胡兴远,等.喷丸强化残余应力对AISI 304不锈钢疲劳裂纹扩展行为的影响[J].表面技术,2021,50 (9):81-90,151. [6] 何柏林,雷思涌.超声冲击对焊接残余应力影响的研究进展[J].兵器材料科学与工程,2015,38(2):120-123. [7] 金辉,何柏林.超声冲击技术强化机理的研究[J].热加工工艺,2018,47 (16):18-22,26. [8] 符浩,刘希林,卢海,等.钛合金焊接接头残余应力的消除方法[J].中国有色金属学报,2010,20 (S1):713-716. [9] GAO H,DUTTA R K,HUIZENGA R M,et al.Stress relaxation due to ultrasonic impact treatment on multi-pass welds[J].Science and Technology of Welding and Joining,2014,19 (6):505-513. [10] HU S,GUO C,WANG D,et al.3D dynamic finite element analysis of the nonuniform residual stress in ultrasonic impact treatment process[J].Journal of Materials Engineering and Performance,2016,25:4004-4015. [11] DEKHTYAR A,MORDYUK B,SAVVAKIN D,et al.Enhanced fatigue behavior of powder metallurgy Ti-6Al-4V alloy by applying ultrasonic impact treatment[J].Materials Science and Engineering:A,2015,641:348-359. [12] CAMPOSECO N C.Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum[J].Journal of Cleaner Production,2015,91:109-117. [13] HAMEEDULLAH M,ABHANG L. Power Prediction Model for Turning EN-31 Steel Using Response Surface Methodology[J].Journal of Engineering Science & Technology Review,2010,3 (1):116. [14] BILGA P S,SINGH S,KUMAR R.Optimization of energy consumption response parameters for turning operation using Taguchi method[J].Journal of Cleaner Production,2016,137:1406-1417. [15] 王进峰,潘丽娟,邢迪雄,等.基于能耗效率的SiCp/Al复合材料切削参数多目标优化[J].中南大学学报(自然科学版),2020,51 (6):1565-1574. [16] 李爱平,鲍进,李聪,等.基于低能耗的平面端铣削粗/精加工参数全局多目标优化[J].中国机械工程,2015,26 (14):1888-1894. [17] 韩军,熊凤生,徐睿.考虑节能条件下的自由曲面加工刀具路径优化研究[J].工具技术,2023,57 (1):123-129. [18] 武煜航,张华,鄢威.面向低能耗高质量的数控加工参数优化与决策方法[J].制造技术与机床,2022(7):101-108. [19] XUE J,SHEN B.Dung beetle optimizer:a new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing,2022,79 (7):7305-7336. [20] 甄然,袁明明,武晓晶,等.基于改进蜣螂算法的无人机航迹规划[J/OL].无线电工程:1-13(2023-11-20)[2024-04-17].http://kns.cnki.net/kcms/detail/13.1097.TN.20231118.1631.004.html. [21] 匡鑫,阳波,马华,等.多策略改进的蜣螂优化算法[J/OL].计算机工程(2024-03-05)[2024-04-17].http://kns.cnki.net/kcms/detail/31.1289.TP.20240301.1635.007.html. [22] 夏焰坤,黄鹏,任俊杰,等.改进蜣螂算法优化混合核极限学习机的系统谐波阻抗估计[J/OL].电力系统及其自动化学报:1-10(2024-03-06)[2024-04-17].https://doi.org/10.19635/j.cnki.csu-epsa.001431. [23] 周艳丽,欧阳瑞祺,陆荣秀,等.中低速磁浮列车操纵策略及运行优化算法[J/OL].铁道学报:1-12(2024-01-25)[2024-04-17].http://kns.cnki.net/kcms/detail/11.2104.u.20240123.1319.002.html. [24] ZHANG D,ZHANG Z,ZHANG J,et al.UAV-assisted task offloading system using dung beetle optimization algorithm & deep reinforcement learning[J].Ad Hoc Networks,2024,156:103434. [25] ZHANG R,ZHU Y.Predicting the Mechanical Properties of Heat-Treated Woods Using Optimization-Algorithm-Based BPNN[J].Forests,2023,14 (5):935. [26] ADAM S P,AlEXANDROPOULOS S N,PARDALOS P M,et al.No free lunch theorem:a review[J].Approximation and Optimization:Algorithms,Complexity and Applications,2019,145(3):57-82. [27] 王敬龙,朱晓宇,王效岗.基于GA-BP神经网络板材辊式矫直工艺预测模型[J].现代制造工程,2023(8):115-120.DOI:10.16731/j.cnki.1671-3133.2023.08.016. |