现代制造工程 ›› 2025, Vol. 534 ›› Issue (3): 132-140.doi: 10.16731/j.cnki.1671-3133.2025.03.016

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于PCA-RF协同的GRU网络滚动轴承退化趋势预测*

张霞1, 梁海波1, 高原2, 万夫2, 李泉昌1, 仇芝1, 缐傲航1   

  1. 1 西南石油大学机电工程学院,成都 610500;
    2 川庆钻探安全环保质量监督检测研究院,德阳 618300
  • 收稿日期:2024-08-27 发布日期:2025-03-28
  • 通讯作者: 李泉昌,博士,讲师,硕士生导师,主要研究方向为装备智能感知与诊断。E-mail:liquanchang@outlook.com
  • 作者简介:张霞,硕士研究生,主要研究方向为智能故障诊断与运维。梁海波,博士,教授,博士生导师,主要研究方向为智能测控技术、人工智能系统。高原,硕士,工程师,主要研究方向为钻井设备智能故障诊断。万夫,硕士,高级工程师,主要研究方向为装备状态监测。仇芝,硕士,副教授,硕士生导师,主要研究方向为油气测控工程。缐傲航,博士研究生,主要研究方向为装备测控与故障诊断。
  • 基金资助:
    *四川省自然科学基金创新研究群体项目(2023NSFSC1981);四川省自然科学基金青年基金项目(2024NSFSC0907);川庆钻探公司-西南石油大学工程技术联合研究院科技项目(CQXN-2022-18)

Rolling bearing degradation trend prediction based on PCA-RF-coordinated GRU network

ZHANG Xia1, LIANG Haibo1, GAO Yuan2, WAN Fu2, LI Quanchang1, QIU Zhi1, XIAN Aohang1   

  1. 1 School of Mechanical and Electrical Engineering,Southwest Petroleum University,Chengdu 610500,China;
    2 Chuanqing Drilling Safety and Environmental Protection Quality Supervision and Inspection Research Institute,Deyang 618300,China
  • Received:2024-08-27 Published:2025-03-28

摘要: 针对旋转机械设备的滚动轴承退化趋势预测依赖于先验知识、预测精度低等问题,提出基于主成分分析(Principal Component Analysis,PCA)和随机森林(Random Forest,RF)协同的门控循环单元(Gated Recurrent Unit,GRU)网络的滚动轴承退化趋势预测方法。首先,优选基于多元统计的高维特征并利用PCA进行聚类降维,构建滚动轴承健康指标;其次,以构建的健康指标为基准,引入RF模型拟合滚动轴承性能退化曲线;最后,建立基于PCA-RF协同的GRU网络滚动轴承退化趋势预测模型,完成滚动轴承状态评估。实验结果表明,所提方法计算的健康指标能够有效反映滚动轴承退化状态,时间趋势性达到0.999 1;基于PCA-RF协同的GRU模型能准确地实现滚动轴承退化趋势预测,在不同数据集上的最大单步和多步预测均方根误差分别为0.018 4和0.047 8。

关键词: 滚动轴承, 退化趋势预测, 主成分分析, 随机森林, 门控循环单元网络, 健康指标

Abstract: The prediction of degradation trends in rotating machinery rolling bearings faces issues such as reliance on prior knowledge and low identification accuracy. To address these issues,a method that integrated Principal Component Analysis (PCA) with Random Forest (RF) and Gated Recurrent Unit (GRU) network for rolling bearing degradation trend prediction was proposed. Firstly,a set of high-dimensional features based on multivariate statistics was optimally selected. Dimensionality reduction and clustering were conducted by PCA to construct health indicators of the rolling bearing. Secondly,the health indicators were constructed to serve as basis,the RF model was introduced to fit the rolling bearings degradation curve. Finally,a PCA-RF-coordinated GRU network model of the rolling bearing degradation trend prediction was established to complete the rolling bearings status assessment. It is verified from experiment that the health indicators of the proposed method can effectively reflecting the degradation status of the rolling bearing,with the time trend of 0.999 1. Furthermore,it is shown that the PCA-RF-coordinated GRU model can accurately predict the degradation trends of the rolling bearing. The maximum root mean square errors for single-step and multi-step predictions on different datasets are 0.018 4 and 0.047 8,respectively.

Key words: rolling bearing, degradation trend prediction, principal component analysis, random forest, gated recurrent unit network, health indicators

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: