[1] LI Gang,HU Jiayao,DING Yaping,et al.SO-IMCKD processed signal improving MSCNN model’s fault diagnosis accuracy for drilling pump fluid end[J].Measurement Science and Technology,2023,34(11):115115. [2] TIAN Huixin,XU Qiangqiang.A spatio-temporal fault diagnosis method based on STF-DBN for reciprocating compressor[J].Journal of Intelligent Manufacturing,2024,35(1):199-216. [3] 张笑璐,邹益胜,张波,等.基于Bagging-MCNN模型的不均衡样本轴承故障诊断方法[J].现代制造工程,2022(1):104-112. [4] 吴梦蝶,程龙生,陈闻鹤.基于自适应马氏空间与深度学习的滚动轴承退化趋势预测[J].系统工程与电子技术,2023,45(10):3338-3349. [5] LÜ Shuai,LIU Shujie,LI Hongkun,et al.A hybrid method combining Lévy process and neural network for predicting remaining useful life of rotating machinery[J].Advanced Engineering Informatics,2024,61:102490. [6] 钟勇,李三雁,荣本阳,等.基于振动信号排列熵和集成支持向量机的滚动轴承退化状态评估[J].中国测试,2021,47(7):13-18. [7] 莫坚,张泽.轴承剩余使用寿命的注意力多尺度卷积神经网络预测[J].现代制造工程,2023(8):148-154. [8] 刘强强,谷艳玲,张品杨.基于TFER及退化趋势相似性分析的轴承剩余使用寿命预测[J].机电工程,2024,41(5):853-861. [9] 李耀龙,李洪儒,王冰.基于协整理论的滚动轴承退化特征提取[J].振动、测试与诊断,2021,41(2):385-391,417-418. [10] 谢雨洁,肖友刚,王田天,等.基于异常检测的轴承退化阶段识别方法[J].中南大学学报(自然科学版),2022,53(5):1740-1749. [11] 程道来,魏婷婷,潘玉娜,等.一种基于RBM的滚动轴承退化指标构建方法[J].振动与冲击,2022,41(16):210-216. [12] 吕明珠.基于T_SNE和AW-SVR的滚动轴承退化状态预测[J].机械设计与制造,2022,374(4):83-87. [13] RIVAS Andy,DELIPEI Gregory Kyriakos. A component diagnostic and prognostic framework for pump bearings based on deep learning with data augmentation[J].Reliability Engineering & System Safety,2024,247:110121. [14] 陈强强,戴邵武,戴洪德.基于SPA-FIG与优化ELM的滚动轴承性能退化趋势预测[J].振动与冲击,2020,39(19):187-194. [15] 王冉,周雁翔,胡雄.基于EMD多尺度威布尔分布与HMM的轴承性能退化评估方法[J].振动与冲击,2022,41(3):209-215. [16] HU Changhua,PEI Hong,SI Xiaosheng,et al.A prognostic model based on DBN and diffusion process for degrading bearing[J].IEEE Transactions on Industrial Electronics,2020,67(10):8767-8777. [17] SU Hao,XIANG Ling,HU Aijun,et al.A novel hybrid method based on KELM with SAPSO for fault diagnosis of rolling bearing under variable operating conditions[J].Measurement,2021,177:109276. [18] 高云龙,罗斯哲,潘金艳.鲁棒自适应概率加权主成分分析[J].自动化学报,2021,47(4):825-838. [19] 董娜,常建芳,吴爱国.基于贝叶斯模型组合的随机森林预测方法[J].湖南大学学报(自然科学版),2019,46(2):123-130. [20] 张忠豪,董方敏,胡枫,等.基于残差的门控循环单元[J].自动化学报,2022,48 (12):3067-3074. [21] 曹梦婷,谷玉海,王红军,等.基于GRU与迁移学习的滚动轴承故障诊断[J].现代制造工程,2022(1):143-147. [22] MOCHAMMAD Solichin,NOH Yoojeong,KANG Youngjin.Bearing fault degradation modeling based on multi-time windows fusion unsupervised health indicator[J].IEEE Sensors Journal,2023,23(17):1. [23] WANG Biao,LEI Yaguo,LI Naipeng,et al.A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings[J].IEEE Transactions on Reliability,2020,69(1):401-412. [24] 焦玲玲,陈捷,刘连华.基于CAE和AGRU的滚动轴承退化趋势预测[J].振动与冲击,2023,42(12):109-117. [25] LONG Zhiqiang,WANG Gao,WANG Ping.A hybrid prognostics approach for estimating remaining useful life of wind turbine bearings[J].ENERGY REPORTS,2020,6(9):173-182. [26] 李志农,李舒扬,柳宝,等.无限隐Markov模型在缺失数据轴承退化趋势预测中的应用[J].振动工程学报,2023,36(2):574-581.
|