现代制造工程 ›› 2018, Vol. 452 ›› Issue (5): 118-124.doi: 10.16731/j.cnki.1671-3133.2018.05.022

• 仪器仪表/检测/监控 • 上一篇    下一篇

汽车座椅噪声的在线检测

武海强, 刘宝华   

  1. 燕山大学河北省并联机器人与机电系统实验室,秦皇岛 066004
  • 收稿日期:2017-02-20 出版日期:2018-05-18 发布日期:2018-07-20
  • 通讯作者: 刘宝华,通信作者,博士,教授,主要研究方向为计算机应用与数字信号处理。 E-mial:446963093@qq.com
  • 作者简介:武海强,硕士研究生,主要研究方向为汽车座椅振动噪声检测。

On line detection of automobile seat noise

Wu Haiqiang, Liu Baohua   

  1. Parallel Robot and Mechatronic System Laboratory,Yanshan University,Qinhuangdao 066004,Hebei,China
  • Received:2017-02-20 Online:2018-05-18 Published:2018-07-20

摘要: 国内汽车座椅的噪声检测主要是在环境噪音不超过30 dB的消声室中进行的,这种方法的缺陷在于消声室的建造费用高、检测效率低以及操作者的技能影响测量精度。针对上述缺陷,提出了一种基于奇异值分解的随机共振联合去噪方法,该方法可以去除外界噪声的干扰,有效地提取座椅振动噪声的特征信号,为后续振动噪声的在线评定奠定基础。仿真和实例结果均表明:基于奇异值分解的随机共振联合去噪方法比单独使用奇异值分解与多稳随机共振方法检测到的信号频率更准确,可以增强信号的幅值,从而更好地检测出被噪声淹没的微弱信号。

关键词: 汽车座椅噪声, 奇异值分解, 随机共振, 检测系统

Abstract: The domestic auto seat noise detecting is mainly in anechoic chamber in which require the environment of noise does not exceed 30 dB.However,this method of defect is building an echoic chamber such a high cost,low detection efficiency,operator skill affect measurement accuracy.In view of the above defects,this paper proposes a stochastic resonance based on singular value decomposition of on-line detection method of automotive noise signal,can filter out outside noise interference,effectively extract the seat vibration noise characteristic signal,for subsequent online assessment laid a solid foundation.Simulation and example results show that the singular value decomposition of stochastic resonance is denoising method than using singular value decomposition and more stable stochastic resonance method detects the signal frequency is more accurate,can enhance the amplitude of the signal,to better detect the weak signal submerged by noise.

Key words: auto seat noise, Singular Value Decomposition(SVD), stochastic resonance, detection system

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: