摘要: 在轴承剩余使用寿命预测的研究过程中,全寿命周期数据的波动性是影响轴承剩余使用寿命预测精度的因素之一。为了降低这种因素的影响,结合迭代生成方式生成的数据具有比原始数据波动性更小的优点,提出一种基于迭代生成特征替换的轴承寿命预测方法。首先采用深度学习模型提取信号特征,其次以迭代生成的方式生成新的信号特征,然后使用该信号特征代替原本提取的信号特征参与轴承寿命预测模型的训练与预测。在一个公开轴承数据集上验证了该方法的有效性,将迭代生成的信号特征与原始数据直接提取的信号特征进行对比,结果表明:迭代生成信号特征在时间方向上具有更小的波动性;这种信号特征有利于降低轴承剩余使用寿命的预测误差。
中图分类号:
版权所有 © 《现代制造工程》编辑部 地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 访问总数:,当日访问:,当前在线: |