现代制造工程 ›› 2024, Vol. 524 ›› Issue (5): 113-120.doi: 10.16731/j.cnki.1671-3133.2024.05.015

• 仪器仪表/检测/监控 • 上一篇    下一篇

基于MFA-UNet的铜制螺纹零件外表面缺陷检测*

马涛, 李敬兆   

  1. 安徽理工大学计算机科学与工程学院,淮南 232001
  • 收稿日期:2023-07-12 出版日期:2024-05-18 发布日期:2024-05-30
  • 通讯作者: 李敬兆,博士,教授,博士生导师,主要研究方向为嵌入式系统、物联网和工业互联网。
  • 作者简介:马涛,硕士研究生,主要研究方向为缺陷检测、图像分割。E-mail:matao52725@163.com
  • 基金资助:
    *国家自然科学基金资助项目(51874010)

Copper threaded part surface defect detection algorithm based on MFA-UNet

MA Tao, LI Jingzhao   

  1. School of Computer Science and Engineering,Anhui University of Science and Technology, Huainan 232001,China
  • Received:2023-07-12 Online:2024-05-18 Published:2024-05-30

摘要: 针对工业现场铜制螺纹零件外表面缺陷检测效率低和精度差的问题,提出一种融合多尺度特征与注意力的U型网络(Multi-Scale Features and Attention Fused UNet,MFA-UNet)模型的铜制螺纹零件外表面缺陷检测算法。首先,设计一种双路下采样模块,并行使用普通卷积和空洞卷积提升模型的特征提取能力;其次,在跳跃连接部分加入复合空间注意力模块,增强分割模型对空间信息和边缘信息的提取能力;然后,在上采样过程中加入压缩激励模块,提高模型的表达能力和特征选择能力;最后,提出一种相似度对比算法,比较分割图像和掩码图像的相似度,得到缺陷检测结果。实验表明,所提分割模型在铜制螺纹零件缺陷检测数据集上PA指标达到94.81 %,MIoU指标达到93.78 %;所提算法缺陷检测准确率达到98.9 %,满足工业现场的使用需求。

关键词: 零件缺陷检测, 图像分割, 注意力机制, 相似度对比

Abstract: In industrial settings, detecting surface defects on copper threaded parts often faces challenges of low efficiency and poor accuracy. To address this, it proposes a copper threaded part surface defect detection algorithm based on MFA-UNet (Multi-Scale Features and Attention Fused UNet). Firstly, a dual down sampling module is designed, utilizing both ordinary convolution and dilated convolution to enhance the model′s feature extraction capabilities. Secondly, a compound spatial attention module is integrated into the skip-connection part to improve the model′s ability to extract spatial and edge information. Subsequently, a squeeze and excitation module is incorporated during the upsampling process to enhance the model′s expressive power and feature selection ability. Lastly, it proposes a similarity comparison algorithm that measures the similarity between segmented images and mask images to obtain the defect detection results. Experimental results demonstrate that the proposed segmentation model achieves a PA of 94.81 % and an MIoU of 93.78 % on the copper threaded part defect detection dataset. The defect detection accuracy of the proposed algorithm reaches 98.9 %, meeting the requirements for industrial field applications.

Key words: part defect detection, image segmentation, attention mechanism, similarity comparison

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: