摘要: 为了解决传统图像处理方法对于铸铝材料表面缺陷检测通用性不高、准确度低等问题,研究了一种基于Mask R-CNN神经网络的缺陷检测系统。首先,采用自主研发的缺陷检测装置采集柱塞式制动主缸内槽表面图像,对其进行预处理,制作成Microsoft COCO格式数据集;其次,搭建适用于该数据集的Mask R-CNN神经网络结构,并绘制训练过程损失函数与平均精度均值曲线;最后,将检测结果与基于SVM和Faster R-CNN模型的检测结果进行比较,统计了3种神经网络模型的单图检测平均时间和识别率。试验结果表明,在相同样本条件下,该方法的识别率比另外2种方法高,达到了93.6%,能够更精确地检测柱塞式制动主缸内槽的表面缺陷。
中图分类号:
版权所有 © 《现代制造工程》编辑部 地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 访问总数:,当日访问:,当前在线: |