现代制造工程 ›› 2021, Vol. 493 ›› Issue (10): 25-32.doi: 10.16731/j.cnki.1671-3133.2021.10.004
黄聿山,陈吉红,陈宇,许光达
摘要: 针对进给轴热误差建模中忽略电控数据和时间序列影响的问题,提出一种考虑温度变化与电控数据的长短期记忆(Long-Short Term Memory, LSTM)神经网络热误差预测模型。以三轴立式加工中心为试验对象,首先对进给轴进行热变形分析,再以温度变化、电控数据为输入样本,建立了LSTM神经网络热误差预测模型,随后通过与仅考虑温度变化的LSTM神经网络,以及同时考虑温度变化与电控数据的BP神经网络进行对比分析,试验论证表明,对数控机床进给轴进行热误差建模时,在考虑温度变化的基础上,进一步考虑电控数据可以提高模型的预测精度和鲁棒性,且在同样输入条件下,LSTM神经网络热误差预测模型相较于BP神经网络有更好的预测精度和鲁棒性。
中图分类号:
版权所有 © 《现代制造工程》编辑部 地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 访问总数:,当日访问:,当前在线: |