[1] 毛亚峰.基于MATLAB/Simulink的电子节气门控制系统仿真[D].西安:长安大学,2012. [2] 张帅.乘用车电子节气门非线性控制研究[D].北京:北京建筑大学,2022. [3] 杨定成,吴金文.基于粒子群优化算法的自调节非线性PID气缸位置控制研究[J].现代制造工程,2019(8):14-19. [4] CHAUHAN V,KUMAR V,SHUKLA M.Dynamic surface control of electronic throttle[C]//International Conference on Recent Developments in Control,Automation and Power Engineering.[S.l.]:IEEE,2015:10-14. [5] 白锐,王胜贤,王贺彬.汽车电子节气门的建模及滑模控制[J].控制工程,2019,26(7):1384-1390. [6] SUN H,ZHAO H,HUANG K,et al.A Fuzzy Approach for Optimal Robust Control Design of an Automotive Electronic Throttle System[J].IEEE Transactions on Fuzzy Systems,2018,26(2):694-704. [7] 徐金榜,赵泓昊,熊文羽,等.基于IMC原理的电子节气门控制策略[J].控制与决策,2018,33(12):2277-2282. [8] LI G,JIAO X.Synthesis and validation of finite time servo control with PSO identification for automotive electronic throttle[J].Nonlinear Dynamics,2017,90(2):1165-1177. [9] 杨新宇,张臻,谭清远,等.基于Hammerstein结构的电子节气门动态非线性建模[J].北京航空航天大学学报,2018,44(12):2605-2612. [10] JANAIDEH A M,RAKHEJA S,SU C Y.A generalized Prandtl-Ishlinskii model for characterizing rate dependent hysteresis [C]//Proceeding of IEEE International Conference on Control Applications.Piscataway,NJ:IEEE Press,2007:343-348. [11] 朱鹏程,张晴,张文华,等.基于BP模糊神经网络PID控制的牵引绞车张力控制研究[J].机床与液压,2022,50(21):137-143. [12] QI W Q.Optimization of cloud computing task execution time and user QoS utility by improved particle swarm optimization[J].Microprocessors and Microsystems,2021,80:103529. [13] 张继荣,张天.基于改进粒子群算法的PID控制参数优化[J].计算机工程与设计,2020,41(4):1035-1040. [14] 杜江,袁中华,王景芹.动态改变惯性权重的新模式粒子群算法[J].安徽大学学报(自然科学版),2018,42(2):60-66. [15] 曹凤才,魏秀业,潘红侠.基于动态惯性权重粒子群算法的齿轮箱故障诊断研究[J].太原理工大学学报,2011,42(2):145-148. [16] 朱敏,赵聪聪,臧昭宇.基于改进型模糊神经网络PID阀位控制研究[J].现代制造工程,2022(1):125-131. [17] GAO J W,FENG K,WANG Y L,et al.Design,implementation and experimental verification of a compensator-based triple-step model reference controller for an automotive electronic throttle[J].Control Engineering Practice,2020,100:104447. |