现代制造工程 ›› 2024, Vol. 521 ›› Issue (2): 45-52.doi: 10.16731/j.cnki.1671-3133.2024.02.007

• 车辆工程制造技术 • 上一篇    下一篇

基于动态惯性权重的电子节气门改进PSO-BP优化控制*

孙建民1,2, 杨世虎1,2, 赵磊1,2, 姚德臣1,2   

  1. 1 北京建筑大学机电与车辆工程学院,北京 100044;
    2 城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044
  • 收稿日期:2023-05-12 出版日期:2024-02-18 发布日期:2024-05-29
  • 作者简介:孙建民,博士,教授,主要从事车辆性能优化与控制方面的研究工作。E-mail:1838525949@qq.com
  • 基金资助:
    *国家自然科学基金项目(51605023);北京市教委科研计划项目(SQKM201810016015);北京建筑大学研究生创新项目(PG2023136,PG2022130)

Improved PSO-BP optimization control of electronic throttle based on dynamic inertia weight

SUN Jianmin1,2, YANG Shihu1,2, ZHAO Lei1,2, YAO Dechen1,2   

  1. 1 School of Mechanical-Electronic and Vehicle Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;
    2 Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles,Beijing 100044,China
  • Received:2023-05-12 Online:2024-02-18 Published:2024-05-29

摘要: 针对汽车电子节气门系统存在的动态迟滞非线性问题,提出一种模糊神经网络PID控制器的设计方法。该控制器将动态调整惯性权重的粒子群优化算法和BP算法结合来优化模糊神经网络参数,修正模糊神经网络在寻优过程中收敛缓慢、易陷入局部最小值的不足。利用模糊神经网络的自学习能力,对PID控制器参数进行整定。仿真结果表明,经过优化后的模糊神经网络PID控制器相比于模糊PID控制器在响应时间、超调量和振荡次数等方面都有显着提升。在模拟气流扰动工况施加扰动信号后,该控制器表现出良好的抗干扰性能。在电子节气门响应试验中,节气门响应曲线存在轻微超调,但稳态误差较小,表明该控制方法下电子节气门具有良好的动态响应特性。

关键词: 动态惯性权重, 电子节气门, 迟滞非线性, 改进粒子群优化算法, 模糊神经网络

Abstract: Aiming at the dynamic hysteresis nonlinear problem of automotive electronic throttle system,a design method of fuzzy neural network PID controller was proposed.The controller combines the particle swarm optimization algorithm which adjusts the inertia weight dynamically with BP algorithm to optimize the parameters of fuzzy neural network,and corrects the shortcomings of slow convergence and easy to fall into the local minimum in the optimization process of fuzzy neural network.Using the self-learning ability of fuzzy neural network,the PID controller parameters were adjusted.The simulation results show that the optimized fuzzy neural network PID controller has a significant improvement in response time,overshoot and oscillation times compared with the fuzzy PID controller.After the disturbance signal was applied to simulate the airflow disturbance condition,the controller shows good anti-interference performance.In the electronic throttle response experiment,the throttle response curve has a slight overshoot,but the steady state error is small,which indicates that the electronic throttle has good dynamic response characteristics under this control method.

Key words: dynamic inertia weight, electronic throttle, hysteretic nonlinearity, improved particle swarm optimization algorithm, fuzzy neural network

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: