现代制造工程 ›› 2024, Vol. 520 ›› Issue (1): 124-129.doi: 10.16731/j.cnki.1671-3133.2024.01.018

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于双路并行卷积信息融合的刀具磨损识别*

赵东旭, 袁志响, 易思广, 潘加港, 张云鹏, 卢文壮   

  1. 南京航空航天大学机电学院,南京 210016
  • 收稿日期:2023-05-04 出版日期:2024-01-18 发布日期:2024-05-29
  • 作者简介:赵东旭,硕士研究生,主要研究方向为智能制造。易思广,博士研究生,主要研究方向为智能制造及其自动化,表面技术。潘加港,硕士研究生,主要研究方向为表面技术、智能制造。张云鹏,硕士研究生,主要研究方向为现代表面技术。卢文壮,教授,博士,主要研究方向为智能制造及制造自动化、超硬材料及工具和现代表面技术等。E-mail:zhaodongxu6174@163.com;1303800428@qq.com
  • 基金资助:
    *国家自然科学基金项目(51975287);南京航空航天大学科研与实践创新计划项目(xcxjh20220502)

Tool wear identification based on dual-channel convolutional information fusion

ZHAO Dongxu, YUAN Zhixiang, YI Siguang, PAN Jiagang, ZHANG Yunpeng, LU Wenzhuang   

  1. Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2023-05-04 Online:2024-01-18 Published:2024-05-29

摘要: 针对机械加工现场环境复杂多变,使用单一信号进行刀具磨损识别难以获取全面的刀具磨损特征信息的问题,提出一种同时利用声音信号和工件表面图像信息结合深度学习网络识别刀具磨损状态的方法。首先采集铣削加工过程中声音信号和工件表面图像数据,然后使用双路并行卷积神经网络对声音信号和工件表面图像进行特征提取及融合,最后进行刀具磨损识别。结果表明,和单一信号识别结果相比,采用信息融合方法能获取更全面的刀具磨损特征信息,有利于增强刀具磨损识别效果,且刀具磨损识别准确率和F1-score均在95 %以上,能有效识别刀具磨损状况。

关键词: 刀具磨损, 磨损识别, 信息融合, 双路卷积神经网络

Abstract: During the machining process,it is difficult to obtain comprehensive information about tool wear characteristics using a single signal due to the complex and varied machining environment. A method is proposed that utilizes a combination of sound signals and surface image signals of workpieces through deep learning networks to recognize tool wear states. Initially,sound signals and surface image data from milling processes are synchronously collected,followed by the establishment of a dual-channel parallel convolutional neural network for feature extraction and fusion of one-dimensional sound signals and two-dimensional workpiece surface images. Finally,tool wear recognition is conducted. The results indicate that the use of information fusion methods can obtain more comprehensive tool wear characteristic information compared to single information recognition results,which is advantageous in improving the tool wear recognition effect.Moreover,the tool wear recognition accuracy and F1-score are above 95 %,allowing for effective recognition of the tool wear condition.

Key words: tool wear, wear recognition, information fusion, dual-channel convolutional neural network

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: