[1] 李凌,黎明,鲁宇明.基于模糊灰度共生矩阵与隐马尔可夫模型的断口图像识别[J].中国图象图形学报,2010,15(9):1370-1375. [2] 张学武,吕艳云,丁燕琼,等.小波统计法的表面缺陷检测方法[J].控制理论与应用,2010,27(10):1331-1336. [3] 李维刚,叶欣,赵云涛,等.基于改进YOLOv3算法的带钢表面缺陷检测[J].电子学报,2020,48(7):1284-1292. [4] 刘孝保,张嘉祥,阴艳超,等.主从特征融合驱动的铝型材表面缺陷检测[J].计算机集成制造系统,2023,29(1):192-199. [5] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Interven-tion-MICCAI 2015: 18th International Conference, Berlin: Springer, 2015: 234-241. [6] LONG J, SHELHAMER E, DARRELL T. Fully convolu-tional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.Piscataway,NJ:IEEE,2015: 3431-3440. [7] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495. [8] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.Piscataway,NJ:IEEE,2017:2881-2890. [9] ZHOU Z, RAHMAN S M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Berlin: Springer, 2018:3-11. [10] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,40(4):834-848. [11] DAMACHARLA P, RAO A, RINGENBERG J, et al. TLU-net: a deep learning approach for automatic steel surface defect detection[C]//2021 International Conference on Applied Artificial Intelligence (ICAPAI).Piscataway,NJ:IEEE, 2021:1-6. [12] ZHENG Z, YANG H, ZHOU L, et al. HLU 2-Net: a residual U-structure embedded U-Net with hybrid loss for tire defect inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70:1-11. [13] SHARMA M,LIM J,LEE H. The amalgamation of the object detection and semantic segmentation for steel surface defect detection[J]. Applied Sciences,2022,12(12):6004-6021. [14] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.Piscataway,NJ:IEEE,2018: 7132-7141. [15] YANG Z, ZHU L, WU Y, et al. Gated channel transformation for visual recognition[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Piscataway,NJ:IEEE,2020: 11794-11803. [16] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Piscataway,NJ:IEEE,2020: 11534-11542. [17] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV).Berlin:Springer,2018: 3-19. [18] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Piscataway,NJ:IEEE,2019: 3146-3154. |