现代制造工程 ›› 2024, Vol. 525 ›› Issue (6): 101-110.doi: 10.16731/j.cnki.1671-3133.2024.06.014

• 制造技术/工艺装备 • 上一篇    下一篇

基于刀具结构的T800-CFRP铣削刀具磨损抑制和加工质量优化*

李浩, 赵威, 李小睿, 陈啸宇   

  1. 南京航空航天大学机电学院,南京 210016
  • 收稿日期:2023-09-25 出版日期:2024-06-18 发布日期:2024-07-02
  • 作者简介:李浩,硕士研究生,主要研究方向为高性能切削技术。E-mail:530010462@qq.com;赵威,教授,博士研究生导师,研究方向为高性能加工技术与装备、可持续制造技术。E-mail:nuaazw@nuaa.edu.cn
  • 基金资助:
    *国家重点研发计划“清洁切削”重点专项课题项目(2018YF2002202)

Tool wear suppression and machining quality optimization for T800-CFRP milling based on tool structure

LI Hao, ZHAO Wei, LI Xiaorui, CHEN Xiaoyu   

  1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2023-09-25 Online:2024-06-18 Published:2024-07-02

摘要: 碳纤维增强树脂基复合材料(Carbon Fiber Reinforced Polymer,CFRP)因其比强度高、抗疲劳和耐腐蚀等优异性能在航空航天领域得到了广泛应用。然而,CFRP材料的非均质性和各向异性使其加工过程与传统金属相比更为复杂,容易产生表面缺陷,且由于碳纤维以及碳纤维粉末的高硬度,使得刀具磨损剧烈,加工效率低。为此,以PCD刀具铣削T800-CFRP多向层合板为研究对象,综合仿真分析和铣削试验,从刀具磨损、已加工表面粗糙度和毛刺因子等方面研究分析了铣削该类材料时的刀具结构对刀具寿命及加工表面质量的影响。基于刀具磨损和表面质量试验结果,以刀具后刀面磨损带宽、表面粗糙度、毛刺因子为优化目标,建立了后刀面磨损带宽VB、表面粗糙度Sa、毛刺因子Fb关于刀具齿数、前角和后角的映射关系模型和综合评价模型,进而通过鲸鱼优化算法,获得了最优的刀具结构参数,并通过试验验证,刀具磨损减小了16.95 %,表面粗糙度减小了32.41 %,毛刺因子减小了52.93 %。

关键词: T800-CFRP, 刀具结构优化, 鲸鱼优化算法, ABAQUS

Abstract: Carbon Fiber Reinforced Polymer(CFRP) has gained widespread application in the aerospace industry due to its excellent properties such as high specific strength,fatigue resistance,and corrosion resistance.However,the heterogeneity and anisotropy of CFRP make the machining processes more complex compared to traditional metals.CFRP are prone to surface defects,and the high hardness of carbon fibers and carbon fiber powders leads to severe tool wear and low machining efficiency. To address this issue,it focuses on the structure of tool for milling T800-CFRP through comprehensive simulation analysis and milling tests,and analyzes the impact of tool structure on tool life and machining surface quality in terms of tool wear,surface roughness,and burr factors during the milling. Take tool flank wear width (VB),surface roughness (Sa),and burr factor (Fb) as optimization objectives,mapping relationships and a comprehensive evaluation model between these factors and tool parameters such as teeth of tool,rake angle,and clearance angle are established. Subsequently,using a Whale Optimization Algorithm (WOA),the optimal tool structure parameters are determined and validated through test. The results show a reduction of 16.95 % in tool wear,a decrease of 32.41 % in surface roughness,and a reduction of 52.93 % in burr factor.

Key words: T800-CFRP, tool structure optimization, whale optimization algorithm, ABAQUS

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: