[1] 高淑芝,王拳,张义民.EEMD熵特征和t-SNE相结合的滚动轴承故障诊断[J].机械设计与制造,2023(6):229-233. [2] TOMA R N,PROSVIRIN A E,KIM J M.Bearing fault diagnosis of indmotors using a genetic algorithm and machine learning classifiers[J].Sensors,2020,20(7):1884-1903. [3] ATTOUI I,OUDJANI B,BOUTASSETA N,et al.Novel predictive features using a wrapper model for rolling bearing fault diagnosis based on vibration signal analysis[J].The International Journal of Advanced Manufacturing Technology,2020,106:3409-3435. [4] 肖杨.基于联邦模型迁移学习的滚动轴承故障诊断方法研究[D].哈尔滨:哈尔滨理工大学,2023. [5] 万安平,龚志鹏,张银龙,等.基于XGBoost-KDE的风机主轴承温度预测与故障预警方法[J].热力发电,2022,51(12):164-171. [6] 卢永,章文,王威,等.油液及振动监测在机泵群轴承早期故障预警中的应用[J].润滑与密封,2020,45(10):136-140. [7] IQBAL M,MADAN A K.CNC machine-bearing fault detection based on convolutional neural network using vibration and acoustic signal[J].Journal of Vibration Engineering & Technologies,2022,10(5):1613-1621. [8] 王续鹏.基于CPA-CYCBD和密集胶囊神经网络的轴承故障诊断方法研究[D].太原:中北大学,2023. [9] AYAS S,AYAS M S.A novel bearing fault diagnosis method using deep residual learning network[J].Multimedia Tools and Applications,2022,81(16):22407-22423. [10] QIAO Z,ELHATTAB A,SHU X,et al.A second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detection[J].Nonlinear Dynamics,2021,106:707-723. [11] 段皓然.基于随机共振和傅立叶分解的滚动轴承故障诊断[D].包头:内蒙古科技大学,2020. [12] ZHANG X,WANG J,LIU Z,et al.Weak feature enhancement in machinery fault diagnosis using empirical wavelet transform and an improved adaptive bistable stochastic resonance[J].ISA Transactions,2019,84:283-295. [13] HUANG D,YANG J,ZHOU D,et al.Novel adaptive search method for bearing fault frequency using stochastic resonance quantified by amplitude-domain index[J].IEEE Transactions on Instrumentation and Measurement,2020,69(1):109-121. [14] 朱炜杰,肖涵,易灿灿,等.基于高斯混合模型的滚动轴承故障预警[J].组合机床与自动化加工技术,2023(8):118-121,126. [15] 谯自健,陈帅,马莉,等.多稳态匹配随机共振在机械早期故障特征提取中的应用[J].振动与冲击,2023,42(11):87-95. [16] SCHILLING A,TZIRIDIS K,SCHULZE H,et al.The Stochastic resonance model of auditory perception:A unified explanation of tinnitus development,zwicker tone illusion,and residual inhibition[J].Progress in Brain Research,2021,262:139-157. [17] 朱彦康,徐刚强,周康康,等.基于信噪比与TOPSIS的凸轮轴铸造工艺参数优化[J].铸造,2023,72(7):909-916. [18] SHAMI T M,El-SALEH A A,ALSWAITTI M,et al.Particle swarm optimization:a comprehensive survey[J].IEEE Access,2022,10:10031-10061. [19] 雷亚国,韩天宇,王彪,等.XJTU-SY滚动轴承加速寿命试验数据集解读[J].机械工程学报,2019,55(16):1-6. [20] 张泽宇,石泽,惠记庄,等.强噪声下工程装备轴承信号的稀疏重构研究[J].机械科学与技术,2021,40(9):1361-1369. |