现代制造工程 ›› 2024, Vol. 521 ›› Issue (2): 128-136.doi: 10.16731/j.cnki.1671-3133.2024.02.017
纪京生, 周莉, 马向阳
JI Jingsheng, ZHOU Li, MA Xiangyang
摘要: 针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden Jackal Optimization,GJO)算法优化后的支持向量机(Support Vector Machine,SVM)进行电机滚动轴承的故障诊断。首先,利用VMD将采集到的信号进行分解,依据局部极小包络熵筛选出最优本征模态(Intrinsic Mode Function,IMF)分量;其次,利用小波包将最优IMF分量再分解,并提取信息熵作为特征向量矩阵;最后,采用GJO算法对支持向量机中的惩罚参数和核参数进行寻优选择,建立GJO-SVM故障诊断模型,将特征向量矩阵输入金豺算法优化支持向量机(GJO-SVM)故障诊断模型中进行故障诊断。将VMD结合小波包信息熵特征提取与VMD结合近似熵特征提取进行对比试验,试验结果表明,VMD结合小波包信息熵特征提取精度提高了2.5 %,其特征提取更加优越;将金豺算法优化支持向量机(GJO-SVM)与粒子群优化(Porticle Swarm OPtimization,PSO)算法支持向量机(PSO-SVM)、果蝇优化算法(Fruit fly Optimation Algorithm,FOA)支持向量机(FOA-SVM)进行对比试验,试验结果表明,GJO-SVM其平均准确率达到99.16 %,较PSO-SVM、FOA-SVM分别提高了2.5 %、3.61 %。金豺算法优化支持向量机(GJO-SVM)可以更加有效提取并诊断滚动轴承故障。
中图分类号:
版权所有 © 《现代制造工程》编辑部 地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 访问总数:,当日访问:,当前在线: |