[1] MAHMOOD H A,KRALLICS G.Prediction and numerical simulation of residual stress in multi-pass pipe welds[J].Pollack Periodica,2021,16(2):7-12. [2] 曹卫华,李熙,吴敏,等.基于极限学习机的热轧薄板轧制力预测模型[J].信息与控制,2014,43(3):270-275. [3] 管志平,李金钊,韦钦洋,等.基于BPNN神经网络的板材V型折弯回弹预测模型[J].塑性工程学报,2022,29(8):1-10. [4] ZHENG G,GE L H,SHI Y Q,et al.Dynamic rolling force prediction of reversible cold rolling mill basedon BP neural network with improved PSO[C]//Proceedings of the 2018 Chinese Automation Congress.Xi’an:[s.n.],2018:2710-2714. [5] 董国疆,陈志伟,赵长财,等.基于神经网络和遗传算法的板材韧性断裂准则参数优化及成形极限预测[J].中国有色金属学报,2021,31(2):419-432. [6] 冀秀梅,王龙,高克伟,等.极限学习机在中厚板轧制力预报中的应用[J].钢铁研究学报,2020,32(5):393-399. [7] 杨静,任彦,高晓文,等.基于GA-PELM的板材热连轧轧制力预测[J].锻压技术,2022,47(1):43-48. [8] CARVALHO M F,RODRIGUES L D,LINS E F.Analysis of residual stresses in railsduring the straightening process[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,43(1):1-12. [9] ZHANG F,ZHAO Y T,SHAO J,et al.Rolling force prediction in heavy plate rolling based on uniform differential neural network[J].Journal of Control Science & Engineering,2016(1):1-9. [10] RUMELHART D E,MCCLELLAND J L.Learning Internal Representations by Error Propagation,Parallel Distributed Processing,Explorations in the Microstructure of Cognition[J].Bulletin of Mathematical Biology,1988,50(2):202-207. [11] XUE J,SHEN B.Dung beetle optimizer:a new Meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing,2022,79(7):7305-7336. [12] SHAO S,PENG Y,HE C,et al.Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J].ISA Trans,2020,97:415-430. [13] 张云鹏,左飞,翟正军.基于双Logistic变参数和Cheby-chev混沌映射的彩色图像密码算法[J].西北工业大学学报,2010,28(4):628-632. [14] 张娜,赵泽丹,包晓安,等.基于改进的Tent混沌万有引力搜索算法[J].控制与决策,2020,35(4):893-900. [15] 张华君.全液压矫直机智能自学习的矫直模型及其电液伺服控制理论[D].太原:太原理工大学,2013. [16] 王敬龙.基于GA-BP神经网络算法的板材辊式矫直工艺预测模型研究[D].太原:太原科技大学,2023. |