现代制造工程 ›› 2024, Vol. 527 ›› Issue (8): 109-117.doi: 10.16731/j.cnki.1671-3133.2024.08.014

• 制造技术/工艺装备 • 上一篇    下一篇

一种辊式矫直智能优化工艺预测模型的研究与应用*

胡鹰, 原嘉辰, 吕畅   

  1. 太原科技大学计算机科学与技术学院,太原 030024
  • 收稿日期:2024-03-18 出版日期:2024-08-18 发布日期:2024-08-30
  • 作者简介:胡鹰,硕士,副教授,硕士生导师,主要研究方向为智能制造与智能装备设计、计算机控制技术与人工智能、物联网技术应用及智能机器人系统等。E-mail:2004011@tyust.edu.cn;原嘉辰,硕士研究生,主要研究方向为计算机控制技术与物联网技术应用。E-mail:18003414592@163.com;吕畅,硕士研究生,主要研究方向为计算机控制技术与人工智能、多目标优化理论及应用。E-mail:aeoluslc@outlook.com
  • 基金资助:
    *国家自然科学基金资助项目(52275357,52175354)

Research and application of an intelligent optimization process prediction model for roller straightening process

HU Ying, YUAN Jiachen, LÜ Chang   

  1. College of Computer Science and Technology,Taiyuan University of Science and Technology, Taiyuan 030024,China
  • Received:2024-03-18 Online:2024-08-18 Published:2024-08-30

摘要: 针对传统矫直过程中需要依赖人工经验、矫直速度慢和板材良品率低的问题,综合考虑板材矫直过程中板厚、弹性模量、屈服强度和板材塑性率等参数对矫直工艺的影响,以及反向传播(Back Propagation,BP)神经网络容易陷入局部最优值和泛化能力不强等问题,引入蜣螂优化(Dung Beetle Optimizer,DBO)算法,建立了基于蜣螂优化算法优化BP神经网络的矫直智能优化工艺预测模型。使用包含1 000条数据的训练集进行训练,对比BP神经网络预测模型和粒子群算法优化BP预测模型,结果表明,蜣螂优化算法优化BP神经网络预测模型的首尾辊压下量百分比误差分别在0.5 %和0.6 %以内,总矫直力百分比误差在0.6 %以内,该预测模型对于矫直工艺的精确预测有较高的参考价值。

关键词: 矫直工艺, 蜣螂优化算法, BP神经网络, 预测模型

Abstract: In response to the issues of reliance on manual expertise,slow straightening speed,and low yield rate of quality products in traditional straightening processes,a straightening intelligent optimization process prediction model based on the Dung Beetle Optimizer (DBO) algorithm optimized Back Propagation (BP) neural network was proposed. Considering the influences of parameters such as plate thickness,elastic modulus,yield strength,and plastic ratio of the plate during the straightening process,as well as the issues of BP neural networks easily falling into local optima and weak generalization ability,the DBO algorithm was introduced.The model was trained using a training set consisting of 1 000 data points. A comparison between the BP neural network prediction model and the particle swarm algorithm optimized BP prediction model was conducted.Results show that the percentage errors of the DBO algorithm optimized BP neural network prediction model for the adjustment amounts of the head and tail rollers are within 0.5 % and 0.6 % respectively,and the total straightening force percentage error is within 0.6 %.The proposed model demonstrates high reference value for accurate prediction of the straightening process.

Key words: straightening process, Dung Beetle Optimizer (DBO) algorithm, Back Propagation (BP) neural network, predic-tion model

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: