[1] AYDIN I,CELEBI S B,BARMADA S,et al.Fuzzy integral-based multi-sensor fusion for arc detection in the pantograph-catenary system[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2018,232(1):159-170. [2] HUANG Z,CHEN L,ZHANG Y,et al.Robust contact-point detection from pantograph-catenary infrared images by employing horizontal-vertical enhancement operator[J].Infrared Physics & Technology,2019,101:146-155. [3] WEI X,JIANG S,LI Y,et al.Defect detection of pantograph slide based on deep learning and image processing technology[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(3):947-958. [4] KARADUMAN G,AKIN E.A deep learning based method for detecting of wear on the current collector Strips' surfaces of the pantograph in railways[J].IEEE Access,2020,8:183799-183812. [5] WEI X K,MENG H F,HE J H,et al.Wear analysis and prediction of rigid catenary contact wire and pantograph strip for railway system[J].Wear,2020,442:203118. [6] HUANG Shize,ZHANG Fan,YU Liangliang,et al.Overview of Non-contact Pantograph-Catenary Arc Detection Based on Image Processing[C]//International Symposium for Intelligent Transportation and Smart City(ITASC).[S.l.]:[s.n.],2017:279-289. [7] HUANG Z,TANG J,SHAN G,et al.An efficient passenger-hunting recommendation framework with multitask deep learning[J].IEEE Internet of Things Journal,2019,6(5):7713-7721. [8] LI H.Research on fault detection algorithm of pantograph based on edge computing image processing[J].IEEE Access,2020,8:84652-84659. [9] NAK M,LEE K,KIM H.Condition Monitoring of Railway Pantograph Using R-CNN and Image Processing[J].Journal of Electrical Engineering & Technology,2023,18(3):2407-2416. [10] WEI X,JIANG S,LI Y,et al.Defect detection of pantograph slide based on deep learning and image processing technology[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(3):947-958. [11] LIU Z,WANG L,LI C,et al.A high-precision loose strands diagnosis approach for isoelectric line in high-speed railway[J].IEEE Transactions on Industrial Informatics,2017,14(3):1067-1077. [12] 张新龙.基于单目视觉激光扫描成像的受电弓磨损检测系统设计[D].石家庄:石家庄铁道大学,2019. [13] 莫圣阳.基于 3D 视觉技术的受电弓磨耗检测系统研究[D].广州:广东工业大学,2015. [14] 别致.基于图像处理的受电弓检测及滑板定位研究[D].成都:西南交通大学,2018. [15] 张乔木,钟倩文,孙明,等.复杂环境下弓网接触位置动态监测方法研究[J].电子科技,2022,35(8):66-72. [16] 田桂艳,高春良.基于多尺度自注意力机制的受电弓图像分割[J].信息技术与信息化,2021(12):164-167. [17] HE X,ZHOU Y,ZHAO J,et al.Swin transformer embedding UNet for remote sensing image semantic segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-15. [18] LU J,WANG W,ZHAO K,et al.Recognition and segmentation of individual pigs based on Swin Transformer[J].Animal Genetics,2022,53(6):794-802. [19] WEI C,REN S,GUO K,et al.High-resolution Swin transformer for automatic medical image segmentation[J].Sensors,2023,23(7):3420. [20] 顾正杰,王财勇,田启川,等.结合Transformer与对称型编解码器的噪声虹膜图像分割方法[J].计算机辅助设计与图形学学报,2022,34(12):1887-1898. [21] ZHONG Z,LIN Z Q,BIDART R,et al.Squeeze-and-Attention Networks for Semantic Segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.[S.l.]:[s.n.],2020:13065-13074. [22] CHEN J,LU Y,YU Q,et al.Transunet:Transformers make strong encoders for medical image segmentation[J].arXiv preprint arXiv,2021,2102:04306. [23] 毛威,高宏力.一种结合域自适应的图像语义分割算法[J].机械设计与制造,2021(10):300-303. [24] LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision.[S.l.]:[s.n.],2021:10012-1. |