现代制造工程 ›› 2018, Vol. 453 ›› Issue (6): 157-162.doi: 10.16731/j.cnki.1671-3133.2018.06.029

• 设备设计/诊断维修/再制造 • 上一篇    

一种基于小波包与KPCA的发动机多信号融合故障诊断方法

么子云1, 朱丽娜1, 潘彪2, 薛继旭2, 张进杰1   

  1. 1 北京化工大学高端机械装备健康监控与自愈化北京市重点实验室,北京 100029;
    2 中石油北京天然气管道有限公司,北京 100101
  • 收稿日期:2016-10-08 出版日期:2018-06-18 发布日期:2018-07-20
  • 作者简介:么子云,博士,研究方向为活塞发动机故障监测诊断技术。张进杰,通信作者,讲师,研究方向为往复机械故障监测诊断技术。E-mail:yaoziyun@gmail.com
  • 基金资助:
    973计划项目(2012CB026005);863计划项目(2014AA041806);中央高校基本科研业务费专项资金资助项目(JD1506)

Research on fault diagnosis by multi-signal fusion of engine based on wavelet packet and KPCA

Yao Ziyun1, Zhu Lina1, Pan Biao2, Xue Jixu2, Zhang Jinjie1   

  1. 1 Beijing Key Laboratory of Health Monitoring Control and Fault Self-Recovery for High-end Machinery,Beijing University of Chemical Technology,Beijing 100029,China;
    2 Petro China Beijing Gas Pipeline Co.Ltd.,Beijing 100101,China
  • Received:2016-10-08 Online:2018-06-18 Published:2018-07-20

摘要: 针对活塞式发动机典型故障提出一种基于小波包分析与核主成分分析技术的多信号融合诊断方法。首先采用小波包对原始振动信号进行分解,提取故障频域特征;然后融合振动时域信号及机组排温等热工参数,采用核主成分分析技术进行参数维度缩减,获得典型故障的敏感特征;最后采用支持向量机完成故障自动分类。实际故障案例数据表明,该方法可有效提取发动机故障特征,故障分类准确性较高。

关键词: 活塞式发动机, 小波包分析, 核主成分分析, 支持向量机, 自动分类

Abstract: Research on typical faults of piston engine,a multi-signal fusion diagnosis method based on wavelet packet analysis and Kernel Principal Component Analysis (KPCA)is proposed.First of all,wavelet packet is used to decompose the original vibration signal,and the fault feature in frequency domain is extracted.Then combined with the vibration signal in time domain and thermal parameters such as unit exhaust temperature,using KPCA to obtain the sensitive characteristics,which will reduce the dimension of parameters.Finally,the Support Vector Machine (SVM)is used to complete the automatic classification of faults.The method is applied to the actual faults of piston engine,and it turns out to have high diagnostic accuracy,which confirmed the validity of this method for feature extraction and fault diagnosis

Key words: piston engine, wavelet packet analysis, Kernel Principal Component Analysis(KPCA), Support Vector Machine(SVM), automatic classification

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: