现代制造工程 ›› 2017, Vol. 439 ›› Issue (4): 11-16.doi: 10.16731/j.cnki.1671-3133.2017.04.003

• 试验研究 • 上一篇    下一篇

AGA-BP神经网络的变压器分接开关机械故障诊断

王福忠, 石秀立   

  1. 河南理工大学电气工程与自动化学院,焦作 454000
  • 收稿日期:2016-04-28 出版日期:2017-04-18 发布日期:2018-01-09
  • 作者简介:王福忠,博士生导师,教授,主要从事工业过程控制、电力电子方面的研究。
    石秀立,硕士研究生,主要从事故障诊断方面的研究。
    E-mail:18839101920@163.com
  • 基金资助:
    国家自然科学基金资助项目(61104079);河南省产学研基金资助项目(132107000027)

Application of tap-changer fault diagnosis of transformer based on AGA-BP neural network

Wang Fuzhong, Shi Xiuli   

  1. School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,Henan,China
  • Received:2016-04-28 Online:2017-04-18 Published:2018-01-09

摘要: 由于变压器有载调压分接开关(On-Load Tap Changer,OLTC)机械故障征兆与机械故障类型之间有着复杂的非线性关系,采用传统的BP神经网络诊断具有准确率低、收敛速度慢和易陷入局部极小值等缺点,提出了一种自适应遗传算法(Adaptive Genetic Algorithm,AGA)优化BP神经网络的故障诊断方法。利用自适应遗传算法对BP神经网络的权值和阈值进行优化,将优化后的BP神经网络应用于OLTC机械故障诊断。仿真结果表明,AGA算法优化BP神经网络的故障诊断模型明显优于传统BP神经网络方法,有效地提高了OLTC的机械故障诊断精度和速度。

关键词: 变压器分接开关, BP神经网络, 遗传算法, 故障诊断

Abstract: The On-Load Tap Changer(OLTC)of transformer has a complex nonlinear relationship between the mechanical fault symptom and fault type,and the traditional BP neural network is used to diagnose with low accuracy,slowing convergence rate and easy to fall into local minimum value and so on.An Adaptive Genetic Algorithm(AGA) is proposed to optimize the BP neural network fault diagnosis.The weights and thresholds of BP neural networks based on adaptive genetic algorithm optimization,and then the optimized BP neural network is applied to the OLTC mechanical fault diagnosis.The simulation results show that the fault diagnosis model of BP neural network optimized by AGA algorithm is superior to the traditional BP neural network method.It can effectively improve the accuracy and speed of the mechanical fault diagnosis of OLTC.

Key words: transformer tap changer, BP neural network, genetic algorithm , fault diagnosis

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: