摘要: 为了提高电动汽车故障诊断的准确性,提出了一种基于改进粒子群(Improved Particle Swarm Optimization,IPSO)算法优化概率神经网络(Probabilistic Neural Network,PNN)的电动汽车故障诊断方法,即基于IPSO-PNN的电动汽车故障诊断方法。首先,研究了基于PNN的电动汽车故障诊断模型,分析了PNN的平滑因子对该模型诊断准确率的影响;其次,在粒子群(Particle Swarm Optimization,PSO)算法中引入频率粒子群和采用动态惯性权重,改善PSO算法的全局和局部寻优能力,利用IPSO算法优化基于PNN的电动汽车故障诊断模型的平滑因子,以改善模型的分类能力;最后进行仿真与分析。仿真结果表明:相较于基于PSO-PNN的电动汽车故障诊断方法,基于IPSO-PNN的电动汽车故障诊断方法具有更高的诊断准确率和诊断速度。
中图分类号:
版权所有 © 《现代制造工程》编辑部 地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn 访问总数:,当日访问:,当前在线: |