现代制造工程 ›› 2024, Vol. 521 ›› Issue (2): 137-141.doi: 10.16731/j.cnki.1671-3133.2024.02.018

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

窄间隙GMAW咬边缺陷的电弧声信号特征分析与识别*

许建龙1, 薛瑞雷1, 吴立斌2, 李晓娟1, 刘宏胜1   

  1. 1 新疆大学智能制造现代产业学院,乌鲁木齐 830017;
    2 四川石油天然气建设工程有限责任公司,成都 610225
  • 收稿日期:2023-03-08 出版日期:2024-02-18 发布日期:2024-05-29
  • 通讯作者: 薛瑞雷,高级工程师,享受国务院特殊津贴专家,主要研究方向为智能化焊接机器人研发和教学。 E-mail:1911224934@qq.com;1981907557@qq.com
  • 作者简介:许建龙,硕士研究生,主要研究方向为智能化焊接应用。
  • 基金资助:
    *新疆维吾尔自治区自然科学基金项目(2022D01C391)

Analysis and identification of arc acoustic signal characteristics of occlusion defects in narrow gap GMAW

XU Jianlong1, XUE Ruilei1, WU Libin2, LI Xiaojuan1, LIU Hongsheng1   

  1. 1 College of Intelligent Manufacturing Modern Industry of Xinjiang University,Urumqi 830017,China;
    2 Sichuan Oil and Gas Construction Engineering Co.,Ltd.,Chengdu 610225,China
  • Received:2023-03-08 Online:2024-02-18 Published:2024-05-29

摘要: 针对窄间隙熔化极气体保护焊(Gas Metal Arc Welding,GMAW)焊道侧壁处局部咬边缺陷检测困难的问题,提出了一种基于电弧声信号特征提取与处理的咬边缺陷在线检测方法。通过分析正常、临界咬边和咬边这3种焊接状态的电弧形态和电弧声信号特征,证实坡口侧壁引起的电弧形态变化是影响电弧声信号变化的重要因素。在此基础上采用小波包时频分析,同时引入特征类间标准差作为评价指标,确定了能有效识别3种焊接状态的敏感特征。采用Sigmoid支持向量机和五折交叉验证建立预测模型,实验结果表明该模型能较好地实现3种焊接状态的预测分类,识别准确率达到96.0 %。

关键词: 窄间隙熔化极气体保护焊, 电弧声信号, 咬边缺陷, 时频分析

Abstract: Aiming at the problem of difficulty in detecting local occlusion defects at the side wall of narrow gap GMAW,an online detection method for occlusion defects based on arc acoustic signal feature extraction and processing was proposed. By analyzing the arc morphology and arc acoustic signal characteristics of normal,critical occlusion and occlusion,it was confirmed that the arc morphology change caused by the side wall of the groove was an important factor affecting the change of arc acoustic signal. On this basis,the time-frequency analysis of wavelet packets was used,and the standard deviation between feature classes was introduced as an evaluation index to determine the sensitive features that can effectively identify the three welding states.Sigmoid support vector machine and five-fold cross-validation were used to establish a prediction model,and the experimental results show that the model can better realize the prediction classification of three welding states,and the recognition accuracy reaches 96.0 %.

Key words: narrow gap GMAW, arc acoustic signal, occlusion defects, time-frequency analysis

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: