现代制造工程 ›› 2024, Vol. 524 ›› Issue (5): 127-137.doi: 10.16731/j.cnki.1671-3133.2024.05.017

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于ICEEMDAN与POA-SVM的感应电机故障诊断*

刘满强, 吴杰   

  1. 兰州理工大学电气工程与信息工程学院,兰州 730000
  • 收稿日期:2023-10-30 出版日期:2024-05-18 发布日期:2024-05-30
  • 通讯作者: 吴杰,硕士研究生,主要研究方向电机故障诊断。E-mail:18709408651@163.com
  • 作者简介:刘满强,硕士,高级工程师,主要研究方向为电机故障诊断、有色冶金装备自动控制。E-mail:liumq2004@163.com
  • 基金资助:
    *国家自然科学基金青年项目(62203196)

Fault diagnosis of induction motor based on ICEEMDAN and POA-SVM

LIU Manqiang, WU Jie   

  1. School of Electrical Engineering and Information Engineering,Lanzhou University of Technology, Lanzhou 730000,China
  • Received:2023-10-30 Online:2024-05-18 Published:2024-05-30

摘要: 针对感应电机定子电流故障特征提取困难,支持向量机(SVM)惩罚系数c和核函数参数g的选择对诊断结果影响较大等问题,提出一种改进自适应噪声平均总体经验模态分解(ICEEMDAN)与鹈鹕优化算法(POA)优化支持向量机(POA-SVM)相结合的感应电机故障诊断方法。首先,利用ICEEMDAN经陷波器滤除工频的定子电流获得一系列固有模态函数(IMF);然后,选取各状态信号的前7阶IMF分量并计算能量熵作为故障特征向量;最后,将故障特征向量输入POA-SVM模型得到诊断结果。通过仿真软件Ansoft/Maxwell建立电机模型来获得电流数据,诊断准确率达到了100 %,实现了感应电机的故障诊断。为进一步验证诊断方法的优越性,搭建电机故障模拟试验台来采集电流信号,结果表明,该方法在空载、半载和满载3种负载情况下诊断准确率均可达到97.5 %以上,与其他故障诊断方法相比,所提方法对感应电机电气故障具有更好的识别能力。

关键词: 改进自适应噪声平均总体经验模态分解, 鹈鹕优化算法, 支持向量机, 感应电机, 故障诊断

Abstract: It is difficult to extract the stator current fault features of induction motor,and the selection of Support Vector Machine (SVM) penalty coefficient c and kernel function parameter g has great influence on the diagnosis results.An induction motor fault diagnosis method based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and Support Vector Machine (POA-SVM) optimized by Pelican Optimization Algorithm (POA) was proposed.Firstly,ICEEMDAN was used to decompose the stator current filtered by notch filter to obtain a series of Intrinsic Mode Function (IMF).Then,the first 7 order IMF components of each state signal were selected and the energy entropy was calculated as the fault feature vector.Finally,the fault feature vector was input into the POA-SVM model to obtain the diagnosis result. Through the simulation software Ansoft/Maxwell,the motor model was established to obtain the current data,the diagnosis accuracy reaches 100 %, and the fault diagnosis of induction motor was realized. In order to further verify the superiority of the diagnosis method,a motor fault simulation test bed was built to collect current signals.The results show that the diagnosis accuracy of the proposed method can reach more than 97.5 % under three load conditions: no-load,half-load and full-load.Compared with other fault diagnosis methods,the proposed method has better recognition ability for induction motor electrical faults.

Key words: improved complete ensemble empirical mode decomposition with adaptive noise, pelican optimization algorithm, support vector machine, induction motor, fault diagnosis

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: