现代制造工程 ›› 2025, Vol. 532 ›› Issue (1): 50-56.doi: 10.16731/j.cnki.1671-3133.2025.01.006

• 机器人技术 • 上一篇    下一篇

复杂动态环境下先验知识引导机器人路径规划*

赵桂清, 崔传辉, 高德营, 邢金鹏, 王宁   

  1. 聊城大学东昌学院,聊城 252000
  • 收稿日期:2024-05-14 出版日期:2025-01-18 发布日期:2025-02-10
  • 作者简介:赵桂清,硕士,教授,主要研究方向为自动控制、电子信息及计算机仿真。E-mail:17865892889@163.com
  • 基金资助:
    * 2023年度山东省聊城市重点研发计划项目(2023YD09);聊城大学东昌学院博士基金项目(2023PHD002)

Robot path planning guided by prior knowledge in complex dynamic environment

ZHAO Guiqing, CUI Chuanhui, GAO Deying, XING Jinpeng, WANG Ning   

  1. Dongchang College,Liaocheng University,Liaocheng 252000,China
  • Received:2024-05-14 Online:2025-01-18 Published:2025-02-10

摘要: 针对车间动态环境下的机器人路径规划问题,提出了先验知识引导下基于模糊DWA算法的路径规划方法。考虑到车间静态环境的恒定性,设计了用于全局路径规划的自适应A*算法,并将此作为先验信息引导机器人运动。建立了机器人运动学模型,在先验信息引导下提出基于模糊DWA的局部路径规划方法,该方法可以根据环境复杂度模糊调整评价函数权重。经实验验证,在30 m×30 m栅格环境中,混合A*算法规划的路径长度为51.32 m,自适应A*算法规划的路径长度为46.83 m,比混合A*算法减少了8.75 %;在局部路径规划中,模糊DWA算法规划路径的安全性、柔顺性和长度均优于标准DWA算法,验证了模糊DWA算法的优越性。

关键词: 车间环境, 先验知识引导, 自适应A*算法, 模糊DWA算法, 环境复杂度

Abstract: Aiming at the problem of robot path planning in workshop dynamic environment,a path planning method based on fuzzy DWA algorithm guided by prior knowledge was proposed. Considering the invariability of the static environment of the workshop,an adaptive A* algorithm for global path planning was designed,and it was used as a prior information to guide the robot movement. The robot kinematics model was established,and a local path planning method based on fuzzy DWA was proposed under the guidance of prior information. This method can fuzzy adjust the weight of the evaluation function according to the complexity of the environment. The experimental results show that in the 30 m×30 m grid environment,the path length planned by the hybrid A* algorithm is 51.32 m,and the path length planned by the adaptive A* algorithm is 46.83 m,which is 8.75 % less than that of the hybrid A* algorithm; in the local path planning,the security,flexibility and length of the fuzzy DWA algorithm are better than the standard DWA algorithm,which verifies the superiority of the fuzzy DWA algorithm.

Key words: workshop environment, prior knowledge guidance, adaptive A* algorithm, fuzzy DWA algorithm, environmental complexity

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: