现代制造工程 ›› 2025, Vol. 534 ›› Issue (3): 99-106.doi: 10.16731/j.cnki.1671-3133.2025.03.012

• 仪器仪表/检测/监控 • 上一篇    下一篇

基于GROOVE-YOLO的电表铅封螺钉旋转检测算法*

贺昊辰, 王琨, 王纲, 李苏芙, 周霁宇, 陈泽欣   

  1. 江南大学机械工程学院,无锡 214122
  • 收稿日期:2024-08-23 发布日期:2025-03-28
  • 通讯作者: 王琨,博士,副教授,硕士研究生导师,主要研究方向为机器人控制技术、仿生机器人、智能装备等。E-mail:wangkun0808@126.com
  • 作者简介:贺昊辰,硕士研究生,主要研究方向为深度学习、机器视觉。E-mail:956237633@qq.com
  • 基金资助:
    *江苏省科技支撑计划(工业)项目-重点项目(BE2020006-5)

Rotating detection algorithm of meter seal screw based on GROOVE-YOLO

HE Haochen, WANG Kun, WANG Gang, LI Sufu, ZHOU Jiyu, CHEN Zexin   

  1. College of Mechanical Engineering,Jiangnan University,Wuxi 214122,China
  • Received:2024-08-23 Published:2025-03-28

摘要: 针对单相智能电表自动化安装场景中,难以精确快速地定位防护盖铅封螺钉的问题,提出了一种基于改进YOLOv8obb的旋转检测算法GROOVE-YOLO,实现在单次检测中获取到目标螺钉的中心位置和旋转角度。首先,增加P2检测头,删除P5特征层,构建微小目标检测网络,提高模型对细小目标检测的能力,简化网络结构;其次,融合双向特征金字塔网络,引入学习权重,优化多尺度特征融合的效果,丰富模型的特征表达;最后,引入全局注意力机制,突出特征中关键信息,进一步提升检测精度。实验结果表明,改进算法的准确率、召回率和平均精度分别达到93.2 %、90.5 %和95.7 %,与原模型相比分别提高了13.5 %、17.1 %和14.3 %,平均中心点像素距离误差为1.4像素,平均旋转角度误差为4.8°,检测速度达到119 f/s。所提方法有效提高了防护盖铅封螺钉的定位精度,满足实际安装需求。

关键词: 旋转目标检测, 电表铅封螺钉, YOLOv8obb, 多尺度特征融合, 注意力机制

Abstract: To solve the problem of difficult to accurately and quickly locate the protecting cover seal screw in the scene of automatic installation for single-phase smart meters,a rotating detection algorithm GROOVE-YOLO based on improved YOLOv8obb was proposed,which could obtain central position and rotating angle of the target screw through a single detection. Firstly,the P2 detection head was added and the P5 feature layer was deleted to build a tiny object detection network,which boosted small object detection capability while simplifying the network structure; secondly,the bidirectional feature pyramid network was fused and learnable weights were applied to improve the effect of multi-scale feature fusion and enrich the model feature expression; finally,the global attention mechanism was employed to highlight the key information in features and further enhance the detection accuracy. The experimental results showed that precision,recall,average precision of the improved algorithm reached 93.2 %,90.5 %,95.7 %,which were increased by 13.5 %,17.1 %,14.3 % compared with the original model. The average pixel distance error of the center point was 1.4 pixels,the average rotating angle error was 4.8°,and the detection speed reached 119 f/s. The proposed method can effectively improve the position accuracy of the protecting cover seal screw and meet the actual installation requirements.

Key words: rotating object detection, meter seal screw, YOLOv8obb, multi-scale feature fusion, attention mechanism

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: