[1] 林建玲,刘洋.铝型材生产加工与环境影响评价浅述[J].南方金属,2016(6):41-43. [2] 卢荣胜,吴昂,张腾达,等.自动光学(视觉)检测技术及其在缺陷检测中的应用综述[J].光学学报,2018,38(8):23-58. [3] 宋育斌,孔维宾,陈希,等.钢材表面缺陷检测研究综述[J].软件导刊,2024,23(3):203-211. [4] 李宗祐,高春艳,吕晓玲,等.基于深度学习的金属材料表面缺陷检测综述[J].制造技术与机床,2023(6):61-67. [5] CHEN G,XU F,LIU G,et al.ESDDNet:efficient small defect detection network of workpiece surface[J].Measurement Science and Technology,2022,33(10):105007. [6] TAO J,ZHU Y,JIANG F,et al.Rolling surface defect inspection for drum-shaped rollers based on deep learning[J].IEEE Sensors Journal,2022,22(9):8693-8700. [7] 王昱翔,葛洪伟.基于U2-Net的金属表面缺陷检测算法[J].南京大学学报(自然科学),2023,59(3):413-424. [8] 张晓雨.铝型材生产加工与环境影响评价研析[J].世界有色金属,2023(21):37-39. [9] 李智.铝型材的成型及机械加工工艺研究[J].今日制造与升级,2023(11):47-49. [10] 徐彦威,李军,董元方,等.YOLO系列目标检测算法综述[J].计算机科学与探索,2024(18):19. [11] JRONDI Z,MOUSSAID A,HADI Y M.Exploring End-to-End object detection with transformers versus YOLOv8 for enhanced citrus fruit detection within trees[J].Systems and Soft Computing,2024,6:200103. [12] 田科位,董绍江,姜保军,等.基于改进深度残差网络的轴承故障诊断方法[J].振动与冲击,2021,40(20):247-254. [13] FIRDIANTIKA M I,LEE S,BHATTACHARYYA C,et al.EGCY-Net:An ELAN and GhostConv-Based YOLO Network for Stacked Packages in Logistic Systems[J].Applied Sciences,2024,14(7):2763. [14] 赵志宏,李春秀,杨绍普. GhostConv轻量级网络设计及故障诊断研究[J]. 振动工程学报,2024,37(1):182-190. [15] 陈清江,顾媛.基于多尺度深度可分离卷积的低照度图像增强算法[J].计算机工程与科学,2023,45(10):1830-1837. [16] 王晓军,陈高宇,李晓航.应用动态激活函数的轻量化YOLOv8行人检测算法[J].计算机工程与应用,2024,60(15):1-16. [17] WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.[S.l.]:[s.n.],2020:11534-11542. [18] 毛志荣,都云程,肖诗斌,等.基于ECA-Net与多尺度结合的细粒度图像分类方法[J].计算机应用研究,2021,38(11):3484-3488. [19] LENG Z,TAN M,LIU C,et al.Polyloss:A polynomial expansion perspective of classification loss functions[J].ArXiv,2022,2204:12511. [20] 铝型材表面瑕疵识别数据集[EB/OL].[2018-11-06].https://tianchi.aliyun.com/dataset/140666.
|