现代制造工程 ›› 2017, Vol. 441 ›› Issue (6): 114-120.doi: 10.16731/j.cnki.1671-3133.2017.06.022

• 制造技术/工艺装备 • 上一篇    下一篇

微磨料气射流成形加工表面波纹度研究

李全来, 李长林, 陶春生   

  1. 北京工商大学材料与机械工程学院,北京 100048
  • 收稿日期:2015-08-11 出版日期:2017-06-18 发布日期:2017-09-26
  • 作者简介:李全来,博士,讲师,主要研究方向:磨料射流加工技术和先进制造技术,已发表论文十余篇。 E-mail:liquanlai@th.btbu.edu.cn
  • 基金资助:
    北京市教育委员会科技发展计划面上项目(KM201310011003);北京工商大学两科培育基金项目(19008001273)

Surface waviness analysis on micro abrasive air jet machining technology

Li Quanlai, Li Changlin, Tao Chunsheng   

  1. School of Material and Mechanical Engineering,Beijing Technology and Business University, Beijing 100048,China
  • Received:2015-08-11 Online:2017-06-18 Published:2017-09-26

摘要: 表面波纹度是评定微磨料气射流加工表面质量的重要指标之一。通过微磨料气射流加工硅片试验,研究了工艺参数及其交互作用对加工表面波纹度的影响,建立了表面波纹度的广义回归神经网络模型。结果表明,喷嘴横移速度对表面波纹度的影响最显著,其次分别是靶距、磨料喷射机工作压力、靶距和喷嘴横移速度的交互作用,以及磨料喷射机工作压力和靶距的交互作用,而磨料喷射机工作压力和喷嘴横移速度的交互作用对表面波纹度的影响不显著。表面波纹度随着磨料喷射机工作压力的增加而增大,随着靶距的增加先增大后减小,随着喷嘴横移速度的增加而减小。选用较低磨料喷射机工作压力和较大靶距的组合,以及较高喷嘴横移速度和中低靶距或者较大靶距的组合均有利于降低表面波纹度。基于广义回归神经网络理论,建立了表面波纹度的神经网络模型。经验证,该模型能够有效地预测表面波纹度。

关键词: 微磨料气射流, 表面波纹度, 工艺参数, 交互效应, 广义回归神经网络

Abstract: Surface waviness is one of the important evaluation indicators for surface quality of micro abrasive air jet machining technology.Based on the experiment of micro abrasive air jet machining of silicon,the influences of process parameters and their interaction effects on surface waviness are studied.Surface waviness generalized regression neural network model is also developed.The results indicate that the nozzle traverse speed has the most significant effect on the surface waviness.The effects of standoff distance,working pressure of abrasive jet machine,the interaction of nozzle traverse speed and standoff distance,as well as the interaction of working pressure of abrasive jet machine and standoff distance are followed.While the interaction of working pressure of abrasive jet machine and nozzle traverse speed has insignificant effect on the surface waviness.The surface waviness increases with an increase in working pressure of abrasive jet machine,while it increases firstly and then decreases with an increase in standoff distance.It decreases with an increase in nozzle traverse speed.The combination of low working pressure of abrasive jet machine and large standoff distance,as well as the combination of high nozzle traverse speed either with medium-low or large standoff distance results in low surface waviness.The neural network model is developed according to the theory of generalized regression neural network.It is found that the model can give an adequate prediction of surface waviness after verification.

Key words: micro abrasive air jet, surface waviness, process parameter, interaction effect, generalized regression neural network

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: