现代制造工程 ›› 2023, Vol. 509 ›› Issue (2): 99-108.doi: 10.16731/j.cnki.1671-3133.2023.02.014

• 仪器仪表/检测/监控 • 上一篇    

基于改进YOLOv4的航空发动机损伤检测方法

蔡舒妤;闫子砚;师利中   

  • 发布日期:2023-03-20
  • 基金资助:
    中央高校基本科研业务费项目(122017026); 航空科学基金项目(20151067003)

  • Published:2023-03-20

摘要: 针对现有目标检测模型参数量大、检测速度慢,难以适应航空发动机孔探检测轻量化应用需求的问题,提出了基于YOLOv4目标检测算法的轻量化航空发动机损伤检测模型。设计了基于深度可分离卷积的轻量化特征融合结构,在YOLOv4的颈部结构(Neck)中,将普通卷积重构为逐通道卷积和逐点卷积的形式,有效减少了网络中的冗余参数;为进一步降低模型参数量,使用MobileNetv3作为特征提取网络。在减少参数量的同时,2种轻量化改进方法有效提高了模型的检测速度;在轻量化后的路径聚合网络(Path Aggregation Network, PANet)中加入卷积注意力模块(Convolutional Block Attention Module, CBAM),通过仅引入少量的参数来提高轻量化网络的损伤检测精度。实验结果表明,改进YOLOv4算法的平均精度均值(mean Average Precision, mAP)为89.82%,模型大小为73.29 MB,检测速度为37.3 FPS。与YOLOv4目标检测算法相比,改进YOLOv4算法以3.55%的mAP损失,使模型参数量降低了约2/3,检测速度提高了1....更多

关键词: 损伤检测; YOLOv4; 深度可分离卷积; MobileNetv3; 卷积注意力模块

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: