[1] 盛嘉玖,陈果,贺志远,等. 一种齿轮故障协同诊断与预警方法[J]. 噪声与振动控制,2024,44(6):111-115,164. [2] ZHENG J D,TU D,PAN H. A Refined Composite Multivariate Multiscale Fuzzy Entropy and Laplacian Score-Based Fault Diagnosis Method for Rolling Bearings[J].Entropy,2017(19):585-593. [3] AN X,PAN L. Wind turbine bearing fault diagnosis based on adaptive local iterative filtering and approximate entropy[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2017 (231):3228-3237. [4] RICHMAN J S,MOORMAN J R. Physiological time series analysis using approximate entropy and sample entropy[J].Am J Physiol,2000,278(6):2039-2049. [5] COSTA M,GOLDBERGER A L,PENG C K.Multiscale entropy analysis of biological signals[J].Phys Rev E Stat Nonlin Soft Matter Phys,2005,71(2):21906. [6] 郑近德,代俊习,朱小龙,等.基于插值多尺度熵与模糊C-均值的滚动轴承故障诊断[J].噪声与振动控制,2018,38(1):193-198. [7] LAKE D E,RICHMAN J S,GRIFFIN M P,et al.Sample entropy analysis of neonatal heart rate variability[J].Am J Physiol,2002,283(3):789-797. [8] 郑近德,程军圣,胡思宇.多尺度熵在转子故障诊断中的应用[J].振动.测试与诊断,2013,33(2):294-297. [9] LI H,QIN X,ZHAO D,et al.An improved empirical mode decomposition method based on the cubic trigonometric B-spline interpolation algorithm[J].Applied Mathematics and Computation,2018,332:406-419. [10] 代俊习.基于多尺度熵理论的滚动轴承故障诊断方法研究[D].马鞍山:安徽工业大学,2017. [11] 邬洲,张军,李隆,等. 基于Kmeans++聚类的光伏系统直流电弧故障检测研究[J]. 太阳能学报,2024,45(11):320-329. [12] ZHAO H Y,WANG J D,XING J J,et al.A feature extraction method based on LMD and MSE and its application for fault diagnosis of reciprocating compressor[J].Journal of Vibroengineering,2015,17(7):3515-3526. [13] CHEN P,ZHAO X Q,ZHU Q X.A novel classification method based on ICGOA-KELM for fault diagnosis of rolling bearing[J].Applied Intelligence,2020,50:2833-2847. [14] JIANG T Y,LI Y K,LI S.Multi-fault diagnosis of rolling bearing using two-dimensional feature vector of WP-VMD and PSO-KELM algorithm[J].Soft Computing,2022,27(12):8175-8187. [15] TRAN V T,ALTHOBIANI F,BALL A,et al.An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks[J].Expert Systems with Applications,2014,41(9):4113-4122. [16] 陆水,李振鹏,李军,等.基于ICEEMDAN多尺度熵与NGO-HKELM的转子故障诊断[J].组合机床与自动化加工技术,2024(4):175-180. [17] 李彦阳,王金东,赵海洋.基于MFO-VMD和GMFE的往复压缩机轴承间隙故障诊断方法 [J].石油化工应用,2024,43(1):98-104,114. [18] 李彦阳,蔡剑华,曲孝海.基于DE-VMD和GMDE的往复压缩机轴承间隙故障诊断方法[J].机电工程,2024,41(4):683-690. [19] 李颖,吴仕虎,杨鑫杰,等.基于GLCM-HOG和WOA-ELM的往复压缩机气阀故障诊断方法 [J].电子测量技术,2023,46(20):156-163. [20] 王海峰,王则林.基于VMD-SDP融合图像和CNN的往复压缩机故障诊断[J].噪声与振动控制,2023,43(4):116-121. [21] 杨宇,潘海洋,程军圣.VPMCD和模糊熵在转子系统故障诊断中的应用[J].振动.测试与诊断,2014,34(5):791-795 [22] 张西良,靳露露.基于字符串变量的模糊熵算法的改进[J].江苏大学学报(自然科学版),2015,36(1):70-73. |