现代制造工程 ›› 2025, Vol. 532 ›› Issue (1): 148-155.doi: 10.16731/j.cnki.1671-3133.2025.01.018

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于时频自监督学习的弱标记滚动轴承故障诊断研究*

邢海波, 李杰   

  1. 中国大唐集团科学技术研究总院有限公司华东电力试验研究院,合肥 230031
  • 收稿日期:2024-05-24 出版日期:2025-01-18 发布日期:2025-02-10
  • 作者简介:邢海波,硕士研究生,工程师,主要研究方向为旋转机械故障诊断。E-mail:972559280@qq.com
  • 基金资助:
    * 中国博士后科学基金第74批面上项目资助项目(2023M740598)

Research on weakly labeled rolling bearing fault diagnosis based on time-frequency self-supervised learning

XING Haibo, LI Jie   

  1. Datang East China Electric Power Test & Research Institute,China Datang Corporation Science and Technology Research Institute Co.,Ltd.,Hefei 230031,China
  • Received:2024-05-24 Online:2025-01-18 Published:2025-02-10

摘要: 针对数据样本弱标记下的滚动轴承故障诊断问题,提出了一种基于时频自监督学习的新方法,在无故障标记样本中提取潜藏故障特征。该方法首先通过构建时域编码器和频域编码器来分别提取时域和频域的特征表示;然后设计了一种时频自监督学习模型来增强时域与频域特征之间的相互预测能力;最后为了优化该模型的学习过程,设计了一种新型交叉相关矩阵损失函数,有效提升了模型对复杂故障模式的捕捉能力。采用凯斯西储大学轴承故障公开数据集和帕德博恩大学轴承公开数据集进行方法验证,实验结果表明,该方法在少数故障标签(5 %故障标记)的数据下取得了优异的诊断效果。

关键词: 滚动轴承, 故障诊断, 时频域特征, 自监督学习, 弱标记样本

Abstract: To tackle the challenge of rolling bearing fault diagnosis under conditions of weakly labeled data samples,a novel approach utilizing self-supervised learning within the time-frequency was developed to unearth latent fault features in fault-free labeled samples.Initially,feature representations were extracted from both the time and frequency domains by constructing respective time and frequency encoders. A model for the time-frequency self-supervised learning was designed to augment the mutual predictive capabilities between features across these domains. Furthermore,to refine the model learning process,a novel cross-correlation matrix loss function was devised,significantly enhancing the model′s proficiency in identifying complex failure modes. The efficacy of this method was confirmed by using both the Case Western Reserve University bearing fault open dataset and the Paderborn University bearing open dataset,where the experimental outcomes indicated superior diagnostic results with minimal fault-labeled data.

Key words: rolling bearing, fault diagnosis, time-frequency domain characteristics, self-supervised learning, weakly labeled samples

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: