[1] 赵伟,周娟,陈科技,等.浙江电网台风风灾的孕灾环境因子敏感性分析[J].灾害学,2022,37(3):118-121. [2] 李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131. [3] 王婧,许志伟,刘文静,等.滚动轴承健康智能监测和故障诊断机制研究综述[J].计算机科学与探索,2023,18(38):878-898. [4] ZHANG L,HU J,XIONG G.Cyclic impact feature enhancement for rolling bearing fault detection based on MED and ICA[J].Computer Integrated Manufacturing Systems,2017,23(2):333-339. [5] MCDONALD G L,ZHAO Q.Multipoint optimal minimum entropy deconvolution and convolution fix:application to vibration fault detection[J].Mechanical Systems and Signal Processing,2017,82:461-477. [6] YE M,YAN X,JIA M.Rolling bearing fault diagnosis based on VMD-MPE and PSO-SVM[J].Entropy,2021,23(6):762. [7] SUN W,CAO X.Curvature enhanced bearing fault diagnosis method using 2D vibration signal[J].Journal of Mechanical Science and Technology,2020,34(6):2257-2266. [8] SINITSIN V,IBRYAEVA O,SAKOVSKAYA V,et al.Intelligent bearing fault diagnosis method combining mixed input and hybrid CNN-MLP model[J].Mechanical Systems and Signal Processing,2022,180:109454. [9] GU Y,ZENG L,QIU G.Bearing fault diagnosis with varying conditions using angular domain resampling technology,SDP and DCNN[J].Measurement,2020,156:107616. [10] ABDELKADER R,KADDOUR A,BENDIABDELLAH A,et al.Rolling bearing fault diagnosis based on an improved denoising method using the complete ensemble empirical mode decomposition and the optimized thresholding operation[J].IEEE Sensors Journal,2018,18(17):7166-7172. [11] 庞新宇,仝钰,魏子涵. 一种GAF-CNN行星齿轮箱故障诊断方法[J]. 北京理工大学学报,2020,40(11):1161-1167. [12] 李少康,陈龙,陈辉,等.基于GAF-CNN的柴油机振动信号故障诊断[J].武汉理工大学学报(交通科学与工程版),2023,47(4):648-653. [13] LI Gong,AO Jiaxing,HU Jiayao,et al.Dual-source gramian angular field method and its application on fault diagnosis of drilling pump fluid end[J].Expert Systems with Applications,2024,237:121521. [14] HUANG W,CHENG J,YANG Y,et al.An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J].Neurocomputing,2019,359:77-92. [15] ZHANG W,PENG G,LI C,et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J].Sensors,2017,17(2):425. [16] JIANG G,HE H,YAN J,et al.Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J].IEEE Transactions on Industrial Electronics,2018,66(4):3196-3207. |