现代制造工程 ›› 2025, Vol. 532 ›› Issue (1): 137-147.doi: 10.16731/j.cnki.1671-3133.2025.01.017

• 设备设计/诊断维修/再制造 • 上一篇    下一篇

基于频域格拉姆角场与多尺度深度残差网络的高频变负载滚动轴承故障诊断研究*

夏之罡1,2, 楼小波3, 马爱军3, 翁兴辰2,3   

  1. 1 浙江泰仑电力集团有限责任公司,湖州 313000;
    2 湖州市碳电数字重点实验室,湖州 313000;
    3 浙江泰仑电力集团有限责任公司送变电工程分公司,湖州 313000
  • 收稿日期:2024-07-12 出版日期:2025-01-18 发布日期:2025-02-10
  • 作者简介:夏之罡,高级工程师,主要研究方向特高压电力智能运检、电网作业智能化。E-mail:scottgao@163.com
  • 基金资助:
    * 湖州市科技计划项目(2019GZ06);浙江泰仑电力集团有限责任公司科技项目(CF058401002022004)

Research on diagnosis of rolling bearing faults based on frequency domain granian angular fidles and multi-scale ResNet

XIA Zhigang1,2, LOU Xiaobo3, MA Aijun3, WENG Xingchen2,3   

  1. 1 Zhejiang Tailun Electric Power Group Co.,Ltd.,Huzhou 313000,China;
    2 Huzhou Carbon and Electricity Digital Key Laboratory,Huzhou 313000,China;
    3 Power Transmission Engineering Branch of Zhejiang Tailun Electric Power Group Co.,Ltd., Huzhou 313000,China
  • Received:2024-07-12 Online:2025-01-18 Published:2025-02-10

摘要: 传动部件运行状态的鲁棒辨识对于保障电力山地清障车服役性能有着重要的意义,在高频变负载运行和高噪声环境下,采集的振动信号常受复杂传递路径和部件耦合的影响,导致受到噪声的干扰,给山地清障车轴承故障的准确诊断带来了挑战。提出了一种基于频域格拉姆角场与多尺度深度残差网络(Residual Networks,ResNet)的滚动轴承故障诊断模型,通过格拉姆角场对时序信号的频域成分进行重构,通过多尺度注意力增强机制对特征进行加权和增强,使故障诊断模型能够自适应地关注故障诊断中最重要的特征,同时抑制噪声的影响。引入残差连接以促进深层网络的训练和信息流动,从而促进模型对复杂特征的学习。采用西安交通大学滚动轴承故障加速寿命试验数据集和利用滚动轴承试验台采集的山地清障车滚动轴承数据集进行验证,2个数据集的故障识别率都达到99 %以上,验证了所提出故障诊断模型的有效性。对比不同变负载工况,模型故障识别率均达到了98.5 %以上,在-6 dB噪声的高频变负载环境下,识别率仍达到90 %以上,进一步验证了故障诊断模型可用于山地清障车轴承故障识别,并具有良好的鲁棒性和泛化能力。

关键词: 格拉姆角场, 多尺度, 残差网络, 高频变负载, 轴承故障诊断, 山地清障车

Abstract: Robust identification of the running state of transmission parts is of great significance to ensure the service performance of electric mountain wreckages.In the high-frequency variable load operation and high noise environment,the collected vibration signals are often affected by complex transmission paths and component coupling,resulting in the interference of irrelevant noise,which brings challenges to the accurate diagnosis of bearing faults of mountain wreckages. A fault diagnosis model of rolling bearing based on frequency domain Granian Angular Fidles and multi-scale Residual Networks (ResNet) is proposed. The frequency component of time series signal is reconstructed by Granian Angular Fidles,and the features are weighted and enhanced by multi-scale attention enhancement mechanism. This enables the model to adaptively focus on the features that are most important for fault diagnosis while suppressing the impact of noise. The residual connection is introduced to promote the training and information flow of the deep network,so as to promote the learning of complex features. The fault accelerated life test data set of rolling bearing in Xi’an Jiaotong University and the rolling bearing data set of mountain wrecking truck collected by using the rolling bearing test bed are used for verification. The fault recognition rate in the two data sets is more than 99 %,which verifies the effectiveness of the proposed fault diagnosis model. Compared with different variable load conditions,the fault recognition rate of the model is more than 98.5 %,and the recognition rate is still more than 90 % in the high-frequency variable load environment of -6 dB noise,which further verifies that the model can be used for bearing fault recognition of mountain wrecktrucks and has good robustness and generalization ability.

Key words: Granian Angular Fidles, multi-scale, Residual Networks(ResNet), high frequency variable load, bearing fault diagnosis, mountain wrecker

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: