[1] 宋向金,赵文祥.交流电机信号特征分析的滚动轴承故障诊断方法综述[J].中国电机工程学报,2022,42(4):1582-1596. [2] 潘作为.大功率电站风机振动监测及故障诊断方法研究[D].北京:华北电力大学,2016. [3] 王冉,张军武,余亮.组稀疏低秩矩阵估计的变转速滚动轴承故障特征提取[J].振动与冲击,2023,42(16):92-100. [4] 赵靖,杨绍普,李强,等.一种残差注意力迁移学习方法及其在滚动轴承故障诊断中的应用[J].中国机械工程,2023,34(3):332-343. [5] 吴康福.基于同步提取变换与阶比分析的轴承变转速故障诊断[J].组合机床与自动化加工技术,2021(4):14-18. [6] 王孟姣.基于时频域特征的风机传动链故障诊断研究[D].吉林:东北电力大学,2023. [7] 苏莹莹,毛海旭.小波变换和CNN涡旋压缩机故障诊断[J].中国测试,2023,49(4):92-97. [8] 王志坚,常雪,王俊元,等.排列熵优化改进变模态分解算法诊断齿轮箱故障[J].农业工程学报,2018,34(23):59-66. [9] ZHANG W,PENG G,LI C,et al.A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals[J].Sensors,2017,17(2):425. [10] 王妮妮,马萍,张宏立,等.基于多尺度深度卷积网络特征融合的滚动轴承故障诊断[J].太阳能学报,2022,43(4):351-358. [11] XING Ziyang,ZHAO Rongzhen,WU Yaochun,et al.Intelligentfault diagnosis of rolling bearing based on novel CNN model considering data imbalance[J].Applied Intelligence,2022,52,16281-16293. [12] CHEN X,YANG R,XUE Y,et al.Deep transfer learning for bearing fault diagnosis:A systematic review since 2016[J].IEEE Transactions on Instrumentation and Measurement,2016,72:1-21. [13] 宋宇航,马萍,李建军,等.基于伪标签深度学习的半监督滚动轴承故障诊断模型[J].噪声与振动控制,2024,44(2):102-107,184. [14] 吕枫,王义,阮胡林,等.深度嵌入关系空间下齿轮箱标记样本扩充及其半监督故障诊断方法[J].仪器仪表学报,2021,42(2):55-65. [15] 牛礼民,胡超,万凌初,等.基于深度迁移学习的车辆悬架高频异常振动故障诊断[J].重庆交通大学学报(自然科学版),2024,43(3):121-127. [16] HAN T,LIU C,YANG W,et al.Deep transfer network with joint distribution adaptaion:a new intelligent fault diagnosis framework for industry application[J].lSA Transactions,2020,97:269-281. [17] 薛英杰,陈颀,周松斌,等.基于自监督特征提取的机械异常声音检测[J].激光与光电子学进展,2022,59(12):361-371. [18] 乔怡群,王田,刘克新,等.基于自监督学习的动力设备异常检测方法[J].空间控制技术与应用,2023,49(6):86-93. [19] 耿传兴,谭正豪,陈松灿.自监督增广的监督分类学习增强[J].软件学报,2023,34(4):1870-1878. [20] 刘忆森,周松斌,薛英杰.一种基于自监督特征提取的机械设备异常声音检测方法[J].激光与光电子学进展, 2022,59(12):11. [21] 李巍华,何琛,陈祝云,等.基于对称式对比学习的齿轮箱无监督故障诊断方法[J].仪器仪表学报,2022,43(3):121-131. [22] LI J,HUANG R,CHEN J,et al.Deep self-supervised domain adaptation network for fault diagnosis of rotating machine with unlabeled data[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-9. [23] AKRIM A,GOGU C,VINGERHOEDS R,et al.Self-supervised learning for data scarcity in a fatigue damage prognostic problem[J].Engineering Applications of Artificial Intelligence,2023,120:105837. [24] 郭晓林.基于深度学习的滚动轴承故障诊断方法研究[D].秦皇岛:燕山大学,2020. [25] 范永胜,丁雪,邓艾东.基于深度条件子域自适应网络的轴承跨域故障诊断研究[J].动力工程学报,2024,44(1):62-67,83. [26] 郝少璞,刘全,徐平安,等.基于余弦相似度的多模态模仿学习方法[J].计算机研究与发展,2023,60(6):1358-1372. [27] 苏树智,张志鹏.基于超图相关距离判别投影的轴承故障诊断方法[J].振动与冲击,2023,42(23):103-111. [28] 史曜炜.风电传动系统故障跨域智能诊断研究[D].南京:东南大学,2023. [29] 周翔宇,毛善君,李梅.基于频域降采样和CNN的轴承故障诊断方法[J].北京大学学报(自然科学版),2023,59(2):251-260. [30] HUANG W,CHENG J,YANG Y,et al.An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J].Neurocomputing,2019,359:77-92. [31] RADFORD A,METZ L,CHINTALA S.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C]//ICLR.[S.l.]:[s.n.],2016. [32] RIZVE M N,DUARTE K,RAWAT Y S,et al.In Defense of Pseudo-Labeling:An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning[C]//ICLR.[S.l.]:[s.n.],2021. [33] HE K,FAN H,WU Y,et al.Momentum Contrast for Unsupervised Visual Representation Learning[C]//IEEE/CVF Conferenceon Computer Vision and Patten Recognition.[S.l.]:[s.n.],2020. [34] TARVAINEN A,VALPOLA H.Mean teachers are better role models:Weight-averaged consistency targets improve semi-supervised deep learning results[C]//In Advances in Neural Information Processing Systems.[S.l.]:[s.n.],2017. |