现代制造工程 ›› 2025, Vol. 532 ›› Issue (1): 23-32.doi: 10.16731/j.cnki.1671-3133.2025.01.003

• 智能制造 • 上一篇    下一篇

基于深度强化学习的风电拉挤板生产智能排程*

杨逢海1, 杨晓英1,2, 裴志杰3, 武亚琪1, 张志伟1   

  1. 1 河南科技大学机电工程学院,洛阳 471003;
    2 机械装备先进制造河南省协同创新中心,洛阳 471003;
    3 河南科技大学商学院,洛阳 471023
  • 收稿日期:2024-05-20 出版日期:2025-01-18 发布日期:2025-02-10
  • 通讯作者: 杨晓英,博士,教授,博士生导师,主要研究方向为工业工程及智能制造等。E-mail:220320010147@stu.haust.edu.cn;lyyxy@haust.edu.cn
  • 作者简介:杨逢海,硕士研究生,主要研究方向为工业工程及智能制造。
  • 基金资助:
    * 河南省重点研发专项项目(231111222600)

Deep reinforcement learning for production intelligent scheduling of wind turbine extrusion panels

YANG Fenghai1, YANG Xiaoying1,2, PEI Zhijie3, WU Yaqi1, ZHANG Zhiwei1   

  1. 1 School of Mechanical Engineering,Henan University of Science and Technology,Luoyang 471003,China;
    2 Henan Collaborative Innovation Center of Advanced Manufacturing of Machinery and Equipment,Luoyang 471003,China;
    3 School of Business,Henan University of Science and Technology,Luoyang 471023,China
  • Received:2024-05-20 Online:2025-01-18 Published:2025-02-10

摘要: 针对具有包装顺序齐套和产品换型调整等复杂特征的风电拉挤板生产排程问题,构建了最大化当期开动设备平均利用率和最大化订单履约率的多目标协同优化模型;将风电拉挤板生产排程问题转化为马尔科夫序列决策问题,设计了10种不同排程策略作为动作空间,提炼适当的状态特征和奖励函数;提出一种基于决斗双深度Q网络(D3QN)的排程算法。通过某企业实际数据的仿真试验,与Double DQN和Dueling DQN算法对比验证所提算法有效性;并比较4种不同求解方法在10个算例下得到的目标值,验证了所提出的改进D3QN算法可以得到问题的高质量解,为风电拉挤板制造企业生产排程提供了一种智能化的方法和参考。

关键词: 风电, 拉挤板, 生产排程, 深度强化学习, D3QN算法

Abstract: In order to solve the wind turbine extrusion panel production scheduling problem with complex features such as packaging order flush and product changeover adjustment,a multi-objective collaborative optimization model was constructed to maximize the average utilization rate of the current starting equipment and maximize the order fulfillment rate;the wind turbine extrusion panel production scheduling problem was transformed into a Markov sequence decision-making problem,and 10 different scheduling strategies were designed as the action space,and the appropriate state features and reward functions were refined; a scheduling algorithm based on Dueling Double Deep Q Network (D3QN) was proposed. The effectiveness of the proposed algorithm was verified by comparing with Double DQN and Dueling DQN algorithms through simulation tests on actual data of an enterprise;and the objective values obtained by four different solution methods under 10 algorithms were compared,which verified that the proposed improved D3QN algorithm can get a high-quality solution to the problem,providing an intelligent method and reference for the production scheduling of wind turbine extrusion panel manufacturing enterprises.

Key words: wind power, extrusion panels, production scheduling, deep reinforcement learning, D3QN algorithm

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: