现代制造工程 ›› 2025, Vol. 532 ›› Issue (1): 87-93.doi: 10.16731/j.cnki.1671-3133.2025.01.011

• 仪器仪表/检测/监控 • 上一篇    下一篇

基于深度学习的短周期拉弧螺柱焊接质量检测

周鑫1, 赵凯悦2, 刘嘉2, 陈成伟3   

  1. 1 北京市产品质量监督检验研究院,北京 101300;
    2 北京工业大学材料与制造学部汽车结构部件先进制造技术教育部工程研究中心,北京 100124;
    3 青岛信芯微电子科技公司,青岛 266100
  • 收稿日期:2024-02-18 出版日期:2025-01-18 发布日期:2025-02-10
  • 作者简介:周鑫,工程师,主要研究方向为检测设备研发及汽车测试。E-mail:batc_jsb_zx@126.com

Short-cycle arc stud welding quality inspection

ZHOU Xin1, ZHAO Kaiyue2, LIU Jia2, CHEN Chengwei3   

  1. 1 Beijing Products Quality Supervision and Inspection Institute, Beijing 101300, China;
    2 Ministry of Education Engineering Research Center, Department of Advanced Manufacturing Technology for Automotive Structural Components, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124,China;
    3 Qingdao Xinxin Microelectronics Technology Co., Ltd., Qingdao 266100, China
  • Received:2024-02-18 Online:2025-01-18 Published:2025-02-10

摘要: 为了提高汽车车厢的密封性,通常采用短周期螺柱焊接方法来固定螺柱,以减少开孔的数量。然而,破坏性实验作为目前主要的评估方法,存在检测效率低和无法检测在役焊接接头问题的缺点;因此,提出了一种基于焊接过程动态参数和焊缝图像相结合的螺柱焊接质量检测方案。为解决动态参数不合格样本数量不足的问题,提出了一种基于距离权重的数据增强算法。同时,设计了一个深度学习模型,结合焊接过程中动态参数信号的特点,采用卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)相结合的方法实现了螺柱焊接质量检测。实验证明,提出的动态参数和焊缝图像相结合的检测方案能够将缺陷螺柱的识别准确率提高至95.33 %;因此,基于动态参数和焊缝图像的短周期螺柱焊接质量检测方法具有较高的检测精度,为实际工程应用提供了一种有效的质量检测方法。

关键词: 短周期螺柱焊, 数据增强, 深度学习, 质量检测

Abstract: In order to enhance the sealing of car compartments, a commonly employed method in the past involved using a short-cycle bolt welding approach to secure bolts and reduce perforation count. However, the prevalent destructive testing method suffered from drawbacks such as low detection efficiency and an inability to identify welding joint issues during service. Addressing these issues, it proposed a bolt welding quality inspection scheme that combines dynamic welding process parameters with weld seam images. To overcome the insufficient number of unqualified samples in dynamic parameters, a distance-weighted data augmentation algorithm was introduced. Additionally, a deep learning model incorporating Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) was designed to achieve bolt welding quality inspection. Experimental results validated the effectiveness of the proposed scheme, demonstrating a 95.33 % accuracy in defect bolt identification. Hence, this short-cycle bolt welding quality inspection method, based on dynamic parameters and weld seam images, showcases high detection precision and provides an effective quality inspection approach for practical engineering applications.

Key words: short-cycle stud welding, data augmentation, deep learning, quality inspection

中图分类号: 


版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
访问总数:,当日访问:,当前在线: